The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is great...The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is greatly affected by the working experience,training degree and fatigue degree of the detection personnel,so the detection results may be biased.The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine,and has high detection accuracy.To improve the measurement accuracy of gear pitting,a novel multi-scale splicing attention U-Net(MSSA U-Net)is explored in this study.An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information.Then,an attention module is applied to select the key features of the splicing feature map.Given that MSSA U-Net adequately uses multi-scale semantic features,it has better segmentation performance on irregular small objects than U-Net and attention U-Net.On the basis of the designed visual detection platform and MSSA U-Net,a methodology for measuring the area ratio of gear pitting is proposed.With three datasets,experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability.Therefore,the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting.展开更多
Based upon the methods for the calculation of load capacity of involute cylindrical gears(ISO / DIS6336), the new method system that can be adaptcd for applying condition is found byapplying regresson analysis and sto...Based upon the methods for the calculation of load capacity of involute cylindrical gears(ISO / DIS6336), the new method system that can be adaptcd for applying condition is found byapplying regresson analysis and stochastic time series analysis to the prediction of pitting life for thegeart, the function is established between pitting area and revolving period of gear, the theoreticalmodel is advanced for tredicting the pitting fatigue life of gear, the problem it solved for obtainingthe applying model by establishing the residue model, the method it put forward the model aboutpredicting pitting fatigue life of gear with damaged condition under middle / low speed and heavyduty.展开更多
To downsize and lighten automatic transmission components, the gears installed must be strengthened in terms of pitting endurance and/or wear resistance. The most important metallurgical factor affecting fractures is ...To downsize and lighten automatic transmission components, the gears installed must be strengthened in terms of pitting endurance and/or wear resistance. The most important metallurgical factor affecting fractures is well known to be resistance to softening when steel is tempered at approximately 573 K. Carbonitriding with a high amount of nitrogen is a very effective production technique because nitrogen increases the resistance during tempering. However, structural anomalies begin to appear in the surface layer when the nitrogen content exceeds 0.6 mass% in the chromium steel generally used. To address this, we have developed new high-strength chromium steel with an optimized chemical composition that effectively inhibits anomalies even when Carbonitriding with a nitrogen content of more than 0.6 mass%. We performed a drivetrain durability test on an automatic transmission component designed to have excellent contact fatigue strength and a tooth root bending impact and fatigue strength. We found that the developed steel that was carbonitrided with a content of about 0.9 mass%, and then shot peened hard, has a pitting life of roughly 4.5 times that of conventionally manufactured steel.展开更多
齿面点蚀是一种典型的行星齿轮系统故障。为识别点蚀状态,本文开展动力学特性研究并提出了一种新型的评估指标。首先,虑及过渡曲线和齿间结构耦合效应,利用改进Weber法建立了精确的含点蚀故障齿轮副啮合刚度模型,并研究了故障程度对啮...齿面点蚀是一种典型的行星齿轮系统故障。为识别点蚀状态,本文开展动力学特性研究并提出了一种新型的评估指标。首先,虑及过渡曲线和齿间结构耦合效应,利用改进Weber法建立了精确的含点蚀故障齿轮副啮合刚度模型,并研究了故障程度对啮合刚度的影响规律。然后,综合考虑时变啮合刚度、静态传动误差、齿侧间隙和时变振动传递路径等多种因素构建了行星齿轮系统平移-扭转动力学模型,揭示了点蚀程度对系统动态特性的影响规律,并基于振动信号频谱特点提出了边带能量因子(Sideband Energy Factor,SEF)用于损伤评估。最后,利用实验验证了仿真模型的正确性及所提指标的有效性。展开更多
疲劳点蚀是齿轮摩擦副的典型固有磨损特征,其产生的点蚀磨粒已经被用于理解疲劳磨损的发生和发展机理,由于缺乏理论模拟,基于磨粒特征的疲劳磨损机理判断还停留在经验分析层面。为此,拟通过齿轮接触疲劳点蚀的数值模拟,研究点蚀磨粒形...疲劳点蚀是齿轮摩擦副的典型固有磨损特征,其产生的点蚀磨粒已经被用于理解疲劳磨损的发生和发展机理,由于缺乏理论模拟,基于磨粒特征的疲劳磨损机理判断还停留在经验分析层面。为此,拟通过齿轮接触疲劳点蚀的数值模拟,研究点蚀磨粒形态特征,为在线磨粒特征表征磨损状态的方法提供理论探索。在考虑弹流润滑的条件下,建立齿轮副局部接触模型,并采用拓展有限元法(Extended finite element method,XFEM)模拟表面萌生裂纹的拓展过程。进一步分析工况与点蚀磨粒形态特征的关系,结果表明,点蚀磨粒长轴尺寸随初始萌生裂纹的长度增加而增大,随载荷的增加而减小;点蚀磨粒的厚度随初始萌生裂纹的深度增加而增大。通过与已发表的试验结果进行对比,该模型所得到的点蚀形貌尺寸和形状与试验得到的点蚀形貌基本一致,从而验证了该模型的有效性。展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.62033001 and 52175075)Chongqing Municipal Graduate Scientific Research and Innovation Foundation of China (Grant No.CYB21010)。
文摘The judgment of gear failure is based on the pitting area ratio of gear.Traditional gear pitting calculation method mainly rely on manual visual inspection.This method is greatly affected by human factors,and is greatly affected by the working experience,training degree and fatigue degree of the detection personnel,so the detection results may be biased.The non-contact computer vision measurement can carry out non-destructive testing and monitoring under the working condition of the machine,and has high detection accuracy.To improve the measurement accuracy of gear pitting,a novel multi-scale splicing attention U-Net(MSSA U-Net)is explored in this study.An image splicing module is first proposed for concatenating the output feature maps of multiple convolutional layers into a splicing feature map with more semantic information.Then,an attention module is applied to select the key features of the splicing feature map.Given that MSSA U-Net adequately uses multi-scale semantic features,it has better segmentation performance on irregular small objects than U-Net and attention U-Net.On the basis of the designed visual detection platform and MSSA U-Net,a methodology for measuring the area ratio of gear pitting is proposed.With three datasets,experimental results show that MSSA U-Net is superior to existing typical image segmentation methods and can accurately segment different levels of pitting due to its strong segmentation ability.Therefore,the proposed methodology can be effectively applied in measuring the pitting area ratio and determining the level of gear pitting.
文摘Based upon the methods for the calculation of load capacity of involute cylindrical gears(ISO / DIS6336), the new method system that can be adaptcd for applying condition is found byapplying regresson analysis and stochastic time series analysis to the prediction of pitting life for thegeart, the function is established between pitting area and revolving period of gear, the theoreticalmodel is advanced for tredicting the pitting fatigue life of gear, the problem it solved for obtainingthe applying model by establishing the residue model, the method it put forward the model aboutpredicting pitting fatigue life of gear with damaged condition under middle / low speed and heavyduty.
文摘To downsize and lighten automatic transmission components, the gears installed must be strengthened in terms of pitting endurance and/or wear resistance. The most important metallurgical factor affecting fractures is well known to be resistance to softening when steel is tempered at approximately 573 K. Carbonitriding with a high amount of nitrogen is a very effective production technique because nitrogen increases the resistance during tempering. However, structural anomalies begin to appear in the surface layer when the nitrogen content exceeds 0.6 mass% in the chromium steel generally used. To address this, we have developed new high-strength chromium steel with an optimized chemical composition that effectively inhibits anomalies even when Carbonitriding with a nitrogen content of more than 0.6 mass%. We performed a drivetrain durability test on an automatic transmission component designed to have excellent contact fatigue strength and a tooth root bending impact and fatigue strength. We found that the developed steel that was carbonitrided with a content of about 0.9 mass%, and then shot peened hard, has a pitting life of roughly 4.5 times that of conventionally manufactured steel.
文摘齿面点蚀是一种典型的行星齿轮系统故障。为识别点蚀状态,本文开展动力学特性研究并提出了一种新型的评估指标。首先,虑及过渡曲线和齿间结构耦合效应,利用改进Weber法建立了精确的含点蚀故障齿轮副啮合刚度模型,并研究了故障程度对啮合刚度的影响规律。然后,综合考虑时变啮合刚度、静态传动误差、齿侧间隙和时变振动传递路径等多种因素构建了行星齿轮系统平移-扭转动力学模型,揭示了点蚀程度对系统动态特性的影响规律,并基于振动信号频谱特点提出了边带能量因子(Sideband Energy Factor,SEF)用于损伤评估。最后,利用实验验证了仿真模型的正确性及所提指标的有效性。
文摘疲劳点蚀是齿轮摩擦副的典型固有磨损特征,其产生的点蚀磨粒已经被用于理解疲劳磨损的发生和发展机理,由于缺乏理论模拟,基于磨粒特征的疲劳磨损机理判断还停留在经验分析层面。为此,拟通过齿轮接触疲劳点蚀的数值模拟,研究点蚀磨粒形态特征,为在线磨粒特征表征磨损状态的方法提供理论探索。在考虑弹流润滑的条件下,建立齿轮副局部接触模型,并采用拓展有限元法(Extended finite element method,XFEM)模拟表面萌生裂纹的拓展过程。进一步分析工况与点蚀磨粒形态特征的关系,结果表明,点蚀磨粒长轴尺寸随初始萌生裂纹的长度增加而增大,随载荷的增加而减小;点蚀磨粒的厚度随初始萌生裂纹的深度增加而增大。通过与已发表的试验结果进行对比,该模型所得到的点蚀形貌尺寸和形状与试验得到的点蚀形貌基本一致,从而验证了该模型的有效性。