In coastal areas with complicated flow movement, deposition and scour readily occur in submarine excavation projects. In this study, a smallscale model, with a high resolution in the vertical direction, was used to si...In coastal areas with complicated flow movement, deposition and scour readily occur in submarine excavation projects. In this study, a smallscale model, with a high resolution in the vertical direction, was used to simulate the tidal current around a submarine excavation project. The finite volume method was used to solve Navier-Stokes equations and the Reynolds stress transport equation, and the entire process of the tidal current was simulated with unstructured meshes, generated in the irregular shape area, and structured meshes, generated in other water areas.The meshes near the bottom and free surface were densified with a minimum layer thickness of 0.05 m. The volume of fluid method was used to track the free surface, the volume fraction of cells on the upstream boundary was obtained from the volume fraction of adjacent cells, and that on the downstream boundary was determined by the water level process. The numerical results agree with the observed data, and some conclusions can be drawn: after the foundation trench excavation, the flow velocity decreases quite a bit through the foundation trench, with reverse flow occurring on the lee slope in the foundation trench; the swirling flow impedes inflow, leading to the occurrence of dammed water above the foundation trench; the turbulent motion is stronger during ebbing than in other tidal stages, the range with the maximum value of turbulent viscosity, occurring on the south side of the foundation trench at maximum ebbing, is greater than those in other tidal stages in a tidal cycle, and the maximum value of Reynolds shear stress occurs on the south side of the foundation trench at maximum ebbing in a tidal cycle. The numerical calculation method shows a strong performance in simulation of the hydrodynamic characteristics of tidal currents in the foundation trench, providing a basis for submarine engineering construction in coastal areas.展开更多
The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the po...The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.展开更多
In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the lar...In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels.展开更多
Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters ...Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.展开更多
The studies of prediction and control of rockburst are presented during deep excavation in a gold mine in China. Firstly,the stress-relief method is used to obtain a vast amount of data about initial geostress. Second...The studies of prediction and control of rockburst are presented during deep excavation in a gold mine in China. Firstly,the stress-relief method is used to obtain a vast amount of data about initial geostress. Secondly,3D FEM analyses of large scale are performed to find out the law of geostress distribution at various excavation levels of the mining area. At the same time,as an equally important measure,six typical kinds of rock blocks are sampled for the experimental study of rockburst tendency. According to the synthesized results of the theoretical and testing results,the methods of brittleness coefficient,brittle index and stress,and so on,are adopted. Finally,the evaluation on the possibility of rockbursts is given that may take place at the deep mining area and some effective measures are put forward to prevent and control the rockburst.展开更多
Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t...Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.展开更多
The subject of this work is the assessment on the stability of an excavated high slope in order to insure the security of the building site adjacent to the slope, which is frequently encountered in town construction i...The subject of this work is the assessment on the stability of an excavated high slope in order to insure the security of the building site adjacent to the slope, which is frequently encountered in town construction in mountainous areas due to terrain limit. On the base of some typical engineering cases in Chongqing, several crucial problems on security assessment of building site adjacent to an excavated high slope, including the natural geological conditions and man-destroyed degree, engineering environment, potential failure pattern of the high slope, calculation parameters and analysis methods, are roundly discussed. It is demonstrated that the conclusion of security assessment can be determined according to the aspects above-mentioned, and the security assessment is one of the fundamental data to insure the safety of the related construction, site and buildings.展开更多
In order to shorten the design cycle of the excavator working device, we have proposed a rapid modeling method for the excavator working device which uses parameters. Based on the Pro/toolkit, which is secondary devel...In order to shorten the design cycle of the excavator working device, we have proposed a rapid modeling method for the excavator working device which uses parameters. Based on the Pro/toolkit, which is secondary development tool of Pro/E4.0,and combined with Vs C++2005 programming software. It developed a flexible set of MFC visualization-friendly interfaces. Users can enter data in the visual interface according to their needs and it will generate a new part model quickly. So it improves the design quality, shortens the design cycle, and makes the cost lower significantly.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41406005)
文摘In coastal areas with complicated flow movement, deposition and scour readily occur in submarine excavation projects. In this study, a smallscale model, with a high resolution in the vertical direction, was used to simulate the tidal current around a submarine excavation project. The finite volume method was used to solve Navier-Stokes equations and the Reynolds stress transport equation, and the entire process of the tidal current was simulated with unstructured meshes, generated in the irregular shape area, and structured meshes, generated in other water areas.The meshes near the bottom and free surface were densified with a minimum layer thickness of 0.05 m. The volume of fluid method was used to track the free surface, the volume fraction of cells on the upstream boundary was obtained from the volume fraction of adjacent cells, and that on the downstream boundary was determined by the water level process. The numerical results agree with the observed data, and some conclusions can be drawn: after the foundation trench excavation, the flow velocity decreases quite a bit through the foundation trench, with reverse flow occurring on the lee slope in the foundation trench; the swirling flow impedes inflow, leading to the occurrence of dammed water above the foundation trench; the turbulent motion is stronger during ebbing than in other tidal stages, the range with the maximum value of turbulent viscosity, occurring on the south side of the foundation trench at maximum ebbing, is greater than those in other tidal stages in a tidal cycle, and the maximum value of Reynolds shear stress occurs on the south side of the foundation trench at maximum ebbing in a tidal cycle. The numerical calculation method shows a strong performance in simulation of the hydrodynamic characteristics of tidal currents in the foundation trench, providing a basis for submarine engineering construction in coastal areas.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2010AA044401)
文摘The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.
基金The authors would like to acknowledge the financial support from the Key Special Project of the National Natural Science Foundation of China(No.41941018)the Special Fund of Yueqi Scholars(No.800015Z1207).
文摘In recent years,the mine tunneling method and the new Austrian tunneling method have been considered the main theories of tunneling approaches in China.It is difficult for the traditional technique to overcome the large deformation problems imposed by complex geological conditions of mountain soft rock tunneling.Hence,the compensation excavation method has been proposed to solve this issue under the consideration that all damage in tunneling originates from the excavation.It uses supportive strategies to counteract the excavation effects successfully.This paper provides an overview of the fundamental ideas of the compensation excavation method,methodologies,and field applications.The scientific validity and feasibility of the compensation excavation method were investigated through the practical engineering study of the Muzhailing and Changning tunnels.
基金National Natural Science Foundation of China,Grant/Award Number:41941018State Key Laboratory for GeoMechanics and Deep Underground Engineering,Grant/Award Number:SKLGDUEK202201。
文摘Given the challenges in managing large deformation disasters in energy engineering,traffic tunnel engineering,and slope engineering,the excavation compensation theory has been proposed for large deformation disasters and the supplementary technology system is developed accordingly.This theory is based on the concept that“all destructive behaviors in tunnel engineering originate from excavation.”This paper summarizes the development of the excavation compensation theory in five aspects:the“theory,”“equipment,”“technology,”the design method with large deformation mechanics,and engineering applications.First,the calculation method for compensation force has been developed based on this theory,and a comprehensive large deformation disaster control theory system is formed.Second,a negative Poisson's ratio anchor cable with high preload,large deformation,and super energy absorption characteristics has been independently developed and applied to large deformation disaster control.An intelligent tunnel monitoring and early warning cloud platform system are established for remote monitoring and early warning system of Newton force in landslide geological hazards.Third,the double gradient advance grouting technology,the two-dimensional blasting technology,and the integrated Newton force monitoring--early warning--control technology are developed for different engineering environments.Finally,some applications of this theory in China's energy,traffic tunnels,landslide,and other field projects have been analyzed,which successfully demonstrates the capability of this theory in large deformation disaster control.
基金Natural Science Foundation of China under Grant No.59979026.
文摘The studies of prediction and control of rockburst are presented during deep excavation in a gold mine in China. Firstly,the stress-relief method is used to obtain a vast amount of data about initial geostress. Secondly,3D FEM analyses of large scale are performed to find out the law of geostress distribution at various excavation levels of the mining area. At the same time,as an equally important measure,six typical kinds of rock blocks are sampled for the experimental study of rockburst tendency. According to the synthesized results of the theoretical and testing results,the methods of brittleness coefficient,brittle index and stress,and so on,are adopted. Finally,the evaluation on the possibility of rockbursts is given that may take place at the deep mining area and some effective measures are put forward to prevent and control the rockburst.
文摘Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.
文摘The subject of this work is the assessment on the stability of an excavated high slope in order to insure the security of the building site adjacent to the slope, which is frequently encountered in town construction in mountainous areas due to terrain limit. On the base of some typical engineering cases in Chongqing, several crucial problems on security assessment of building site adjacent to an excavated high slope, including the natural geological conditions and man-destroyed degree, engineering environment, potential failure pattern of the high slope, calculation parameters and analysis methods, are roundly discussed. It is demonstrated that the conclusion of security assessment can be determined according to the aspects above-mentioned, and the security assessment is one of the fundamental data to insure the safety of the related construction, site and buildings.
文摘In order to shorten the design cycle of the excavator working device, we have proposed a rapid modeling method for the excavator working device which uses parameters. Based on the Pro/toolkit, which is secondary development tool of Pro/E4.0,and combined with Vs C++2005 programming software. It developed a flexible set of MFC visualization-friendly interfaces. Users can enter data in the visual interface according to their needs and it will generate a new part model quickly. So it improves the design quality, shortens the design cycle, and makes the cost lower significantly.