In order to understand the effects of thinning on microsite conditions and natural regeneration in the larch plantation, thinning experiment was conducted in a 40-year-old Larix olgensis plantation in Qingyuan County ...In order to understand the effects of thinning on microsite conditions and natural regeneration in the larch plantation, thinning experiment was conducted in a 40-year-old Larix olgensis plantation in Qingyuan County in eastern Liaoning Province, China in 2003-2004 Five thinning treatments (0%, 10.2%, 19.8%, 29.7% and 40.3% thinned) were designed on the same site. After thinning, canopy openness and the microsite conditions such as photosynthetic photon flux density (PPFD), soil moisture content, and soil temperature were measured in one growing season. Meanwhile, the investigation of natural regeneration was conducted at the end of the growing season. The results showed that the canopy openness increased with the increase of thinning intensities. PPFD and soil temperature and soil moisture content in different soil layers were positively relative with canopy openness after thinning. The richness of regenerating tree species did not significantly increase (p=0.30) after one growing season since thinning, but the regeneration density and frequency of tree species increased significantly (p〈0.05). In addition, the number of regenerating tree species increased, and the increment was correlated with the characteristics of iudividual tree species. The increasing percentage of regenerating seedlings of the shade-intolerant tree species was more than that of shade-tolerant tree species. Among the investigated regeneration species, the biggest response of seedling emergency to the canopy openness was Phellodendron amurense. This paper confirmed the following conclusions: after thinning, the variety of regenerating tree species was correlative with the characteristics of regenerating tree species, and the distribution of unthinned trees and the site conditions in the investigated larch plantation were the additional factors influencing, the regeneration.展开更多
First-year seedling survival impacts all subsequent management planning in plantation forestry. Descriptive statistics of first-year seedling survival data from the Louisiana Department of Agriculture and Forestry (LD...First-year seedling survival impacts all subsequent management planning in plantation forestry. Descriptive statistics of first-year seedling survival data from the Louisiana Department of Agriculture and Forestry (LDAF) indicated that survival success reaches a plateau at between 79% - 85% under normal weather conditions. We provide an explanation for this plateau based on an analysis of seedling and microsite qualities involved in operational pine plantations by: 1) using a conceptual model demonstrating how variation in seedling quality and microsite quality interact to determine plantation survival, 2) presenting an example to characterize quality distributions of seedling and microsite qualities, and 3) comparing model outcomes based on measured distributions to realistic values of first-year survival. Simulation results indicated that consistent survival could result from random pairings of initial seedling and site quality distributions. LDAF data analysis indicated that 72% of seedlings were associated with the most frequent quality class that comprised seedlings with stem caliper between 3.2 to 4.7 mm and average stem height and volume of 25.75 cm and 3.43 cm3, respectively. Similarly, assessment of microsites at planting sites in Southeast Louisiana indicated that 48% of planted seedlings were associated with the most frequent microsite quality class which supported first-year height increment between 9 to 29 cm. Modelling of current operational practice indicated that using seedlings with larger caliper size would increase first year survival, but would result in higher establishment costs. The conceptual model could be modified to for use in other regions regardless of species types involved.展开更多
Our knowledge of microbial processes—who is responsible for what,the rates at which they occur,and the substrates consumed and products produced—is imperfect for many if not most taxa,but even less is known about ho...Our knowledge of microbial processes—who is responsible for what,the rates at which they occur,and the substrates consumed and products produced—is imperfect for many if not most taxa,but even less is known about how microsite processes scale to the ecosystem and thence the globe.In both natural and managed environments,scaling links fundamental knowledge to application and also allows for global assessments of the importance of microbial processes.But rarely is scaling straightforward:More often than not,process rates in situ are distributed in a highly skewed fashion,under the influence of multiple interacting controls,and thus often difficult to sample,quantify,and predict.To date,quantitative models of many important processes fail to capture daily,seasonal,and annual fluxes with the precision needed to effect meaningful management outcomes.Nitrogen cycle processes are a case in point,and denitrification is a prime example.Statistical models based on machine learning can improve predictability and identify the best environmental predictors but are—by themselves—insufficient for revealing process-level knowledge gaps or predicting outcomes under novel environmental conditions.Hybrid models that incorporate well-calibrated process models as predictors for machine learning algorithms can provide both improved understanding and more reliable forecasts under environmental conditions not yet experienced.Incorporating trait-based models into such efforts promises to improve predictions and understanding still further,but much more development is needed.展开更多
Mining activity affects the vegetation and soils of the ecosystems.However,the effects of mining activity on saxicolous lichen communities are less concerned.Thus,the aim of this study was to characterize saxicolous l...Mining activity affects the vegetation and soils of the ecosystems.However,the effects of mining activity on saxicolous lichen communities are less concerned.Thus,the aim of this study was to characterize saxicolous lichen communities in three basins(Vis-Vis River basin,Poteros River basin,and Capillitas River basin)surrounding metalliferous mining projects of different types of operation and at different stages of exploitation.A large-scale mine(Bajo de la Alumbrera)with more than 25 a of open-pit mining located in the Vis-Vis River basin(CRV).A pre-exploitation mine(Agua Rica)located in the Poteros River basin(CRP),and a small-scale mine(Minas Capillitas)with more than 160 a of underground mining located in the Capillitas River basin(CAC).In each basin,species richness,cover,and frequency of lichen communities were measured on 40 rock outcrops.Also,explanatory variables were recorded,i.e.,altitude,slope,aspect,vegetation cover,rock,and soil cover around the rocky area sampled.Richness and total cover of lichen communities were analysed using linear models,and species composition was explored using multivariate ordination analysis.Results showed that a total of 118 lichen species were identified.The species richness differed among basins and the lichen composition present in areas close to mining sites responded mainly to basins,altitude,and microsite variables.The lichen cover showed no difference among basins,but it changed under different rock and vegetation cover.It was not possible to quantify the effects of mining activity on species richness and composition.However,the low richness values found in the downstream of Minera Alumbrera could be associated with the negative impact of open-pit mining.Moreover,the effects of large-scale mining activity on lichen communities needs more investigation.展开更多
Background:Due to the effects of climate change and overgrazing in recent decades,alternative stable states in the alpine Kobresia meadow degradation process have coexisted in the same geographical and climatic enviro...Background:Due to the effects of climate change and overgrazing in recent decades,alternative stable states in the alpine Kobresia meadow degradation process have coexisted in the same geographical and climatic environment,with variations occurring among microsites.Methods:We used a space-for-time substitution approach to explore the synergies of microsite variation according to its numerical characteristics and the proportion of each stable state at various stages of succession in alpine Kobresia meadows on the Qinghai-Tibetan Plateau.Results:(1)The highest average aboveground biomass in summer was 196.2±20.3 gm^(-2),with significantly higher levels of biomass in≤3.65 sheep unit ha^(-1) than in other levels of grazing intensity,while the parameters showed no significant differences among grazing intensity levels in>3.65 sheep unit ha^(-1).(2)The importance of plant functional groups,aboveground biomass,and niche breadth of Poaceae and Cyperaceae significantly decreased as the grazing intensity increased.(3)The effects of≥0°C accumulated temperature,total precipitation,altitude,longitude,and latitude cumulatively contributed less than 20%of the variation in the distribution of functional group characteristics across microsites.Conclusions:(1)Overgrazing decreases primary production in alpine Kobresia meadows,but ecosystem responses regulate plant community structure and botanical components so as to partially counteract grazing disturbance.(2)Overgrazing changed the proportion of microsites,which in turn led to regime shift in the plant community and subsequent synergies between the microsites of plant communities and their stable states.展开更多
基金This study was supported by “the 100-Young-Research Project” of Chinese Academy of Sciences and National Natural Science Foundation of China (30371149)
文摘In order to understand the effects of thinning on microsite conditions and natural regeneration in the larch plantation, thinning experiment was conducted in a 40-year-old Larix olgensis plantation in Qingyuan County in eastern Liaoning Province, China in 2003-2004 Five thinning treatments (0%, 10.2%, 19.8%, 29.7% and 40.3% thinned) were designed on the same site. After thinning, canopy openness and the microsite conditions such as photosynthetic photon flux density (PPFD), soil moisture content, and soil temperature were measured in one growing season. Meanwhile, the investigation of natural regeneration was conducted at the end of the growing season. The results showed that the canopy openness increased with the increase of thinning intensities. PPFD and soil temperature and soil moisture content in different soil layers were positively relative with canopy openness after thinning. The richness of regenerating tree species did not significantly increase (p=0.30) after one growing season since thinning, but the regeneration density and frequency of tree species increased significantly (p〈0.05). In addition, the number of regenerating tree species increased, and the increment was correlated with the characteristics of iudividual tree species. The increasing percentage of regenerating seedlings of the shade-intolerant tree species was more than that of shade-tolerant tree species. Among the investigated regeneration species, the biggest response of seedling emergency to the canopy openness was Phellodendron amurense. This paper confirmed the following conclusions: after thinning, the variety of regenerating tree species was correlative with the characteristics of regenerating tree species, and the distribution of unthinned trees and the site conditions in the investigated larch plantation were the additional factors influencing, the regeneration.
文摘First-year seedling survival impacts all subsequent management planning in plantation forestry. Descriptive statistics of first-year seedling survival data from the Louisiana Department of Agriculture and Forestry (LDAF) indicated that survival success reaches a plateau at between 79% - 85% under normal weather conditions. We provide an explanation for this plateau based on an analysis of seedling and microsite qualities involved in operational pine plantations by: 1) using a conceptual model demonstrating how variation in seedling quality and microsite quality interact to determine plantation survival, 2) presenting an example to characterize quality distributions of seedling and microsite qualities, and 3) comparing model outcomes based on measured distributions to realistic values of first-year survival. Simulation results indicated that consistent survival could result from random pairings of initial seedling and site quality distributions. LDAF data analysis indicated that 72% of seedlings were associated with the most frequent quality class that comprised seedlings with stem caliper between 3.2 to 4.7 mm and average stem height and volume of 25.75 cm and 3.43 cm3, respectively. Similarly, assessment of microsites at planting sites in Southeast Louisiana indicated that 48% of planted seedlings were associated with the most frequent microsite quality class which supported first-year height increment between 9 to 29 cm. Modelling of current operational practice indicated that using seedlings with larger caliper size would increase first year survival, but would result in higher establishment costs. The conceptual model could be modified to for use in other regions regardless of species types involved.
基金support was provided by the Great Lakes Bioenergy Research Center,US Department of Energy,Office of Science,Office of Biological and Environmental Research(Award DE‐SC0018409)the National Science Foundation Long‐term Ecological Research Program(DEB 2224712)at the Kellogg Biological Station,the USDA Long‐term Agroecosystem Research Network program,and by Michigan State University AgBioResearch.
文摘Our knowledge of microbial processes—who is responsible for what,the rates at which they occur,and the substrates consumed and products produced—is imperfect for many if not most taxa,but even less is known about how microsite processes scale to the ecosystem and thence the globe.In both natural and managed environments,scaling links fundamental knowledge to application and also allows for global assessments of the importance of microbial processes.But rarely is scaling straightforward:More often than not,process rates in situ are distributed in a highly skewed fashion,under the influence of multiple interacting controls,and thus often difficult to sample,quantify,and predict.To date,quantitative models of many important processes fail to capture daily,seasonal,and annual fluxes with the precision needed to effect meaningful management outcomes.Nitrogen cycle processes are a case in point,and denitrification is a prime example.Statistical models based on machine learning can improve predictability and identify the best environmental predictors but are—by themselves—insufficient for revealing process-level knowledge gaps or predicting outcomes under novel environmental conditions.Hybrid models that incorporate well-calibrated process models as predictors for machine learning algorithms can provide both improved understanding and more reliable forecasts under environmental conditions not yet experienced.Incorporating trait-based models into such efforts promises to improve predictions and understanding still further,but much more development is needed.
基金Secretariat of Science and Technology of the National University of Catamarca, Argentina for financial supportNational Council for Scientific and Technical Research, Argentina for the PhD fellowship to Juan M HERNáNDEZ
文摘Mining activity affects the vegetation and soils of the ecosystems.However,the effects of mining activity on saxicolous lichen communities are less concerned.Thus,the aim of this study was to characterize saxicolous lichen communities in three basins(Vis-Vis River basin,Poteros River basin,and Capillitas River basin)surrounding metalliferous mining projects of different types of operation and at different stages of exploitation.A large-scale mine(Bajo de la Alumbrera)with more than 25 a of open-pit mining located in the Vis-Vis River basin(CRV).A pre-exploitation mine(Agua Rica)located in the Poteros River basin(CRP),and a small-scale mine(Minas Capillitas)with more than 160 a of underground mining located in the Capillitas River basin(CAC).In each basin,species richness,cover,and frequency of lichen communities were measured on 40 rock outcrops.Also,explanatory variables were recorded,i.e.,altitude,slope,aspect,vegetation cover,rock,and soil cover around the rocky area sampled.Richness and total cover of lichen communities were analysed using linear models,and species composition was explored using multivariate ordination analysis.Results showed that a total of 118 lichen species were identified.The species richness differed among basins and the lichen composition present in areas close to mining sites responded mainly to basins,altitude,and microsite variables.The lichen cover showed no difference among basins,but it changed under different rock and vegetation cover.It was not possible to quantify the effects of mining activity on species richness and composition.However,the low richness values found in the downstream of Minera Alumbrera could be associated with the negative impact of open-pit mining.Moreover,the effects of large-scale mining activity on lichen communities needs more investigation.
基金National Natural Science Foundation of China,Grant/Award Number:U20A2006Youth Project of Qinghai Province,Grant/Award Number:2023-ZJ-967Q Abstract。
文摘Background:Due to the effects of climate change and overgrazing in recent decades,alternative stable states in the alpine Kobresia meadow degradation process have coexisted in the same geographical and climatic environment,with variations occurring among microsites.Methods:We used a space-for-time substitution approach to explore the synergies of microsite variation according to its numerical characteristics and the proportion of each stable state at various stages of succession in alpine Kobresia meadows on the Qinghai-Tibetan Plateau.Results:(1)The highest average aboveground biomass in summer was 196.2±20.3 gm^(-2),with significantly higher levels of biomass in≤3.65 sheep unit ha^(-1) than in other levels of grazing intensity,while the parameters showed no significant differences among grazing intensity levels in>3.65 sheep unit ha^(-1).(2)The importance of plant functional groups,aboveground biomass,and niche breadth of Poaceae and Cyperaceae significantly decreased as the grazing intensity increased.(3)The effects of≥0°C accumulated temperature,total precipitation,altitude,longitude,and latitude cumulatively contributed less than 20%of the variation in the distribution of functional group characteristics across microsites.Conclusions:(1)Overgrazing decreases primary production in alpine Kobresia meadows,but ecosystem responses regulate plant community structure and botanical components so as to partially counteract grazing disturbance.(2)Overgrazing changed the proportion of microsites,which in turn led to regime shift in the plant community and subsequent synergies between the microsites of plant communities and their stable states.