We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of ...We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.展开更多
基金Basic Science Research Program through the National Research Foundation of Korea (NRF),The Ministry of Education,Science and Technology,The New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP),The Korea government Ministry of Knowledge Economy,M.J.Kim appreciates the financial support from National Science Foundation
文摘We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.