In this work,we proposed a green and cost-effective method to prepare a graphene-based hyper-cross-linked porous carbon composite(GN/HCPC)by one-pot carbonization of hyper-cross-linked polymer(HCP)and glucose.The comp...In this work,we proposed a green and cost-effective method to prepare a graphene-based hyper-cross-linked porous carbon composite(GN/HCPC)by one-pot carbonization of hyper-cross-linked polymer(HCP)and glucose.The composite combined the advantages of graphene(GN)and hyper-cross-linked porous carbon(HCPC),leading to high specific surface area(396.93 m^2/g)and large total pore volume(0.413 cm^3/g).The resulting GN/HCPC composite was applied as an adsorbent to remove 2,4-dichlorophenol(2,4-DCP)from aqueous solutions.The influence of different solution conditions including pH,ionic strength,contact time,system temperature and concentration of humic acid was determined.The maximum adsorption capacity of GN/HCPC composite(calculated by the Langmuir model)could reach 348.43 mg/g,which represented increases of 43.6%and 13.6%over those of the as-prepared pure GN and HCPC,respectively.The Langmuir model and pseudo-second-order kinetic model were found to fit well with the adsorption process.Thermodynamic experiments suggested that the adsorption proceeded spontaneously and endothermically.In addition,the GN/HCPC composite showed high adsorption performance toward other organic contaminants including tetracycline,bisphenol A and phenol.Measurement of the adsorption capability of GN/HCPC in secondary effluent revealed a slight decrease over that in pure water solution.This study demonstrated that the GN/HCPC composite can be utilized as a practical and efficient adsorbent for the removal of organic contaminants in wastewater.展开更多
基金financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China(No.2018ZX07110004)the National Natural Science Foundation of China(Nos.21677156 and 21477118)
文摘In this work,we proposed a green and cost-effective method to prepare a graphene-based hyper-cross-linked porous carbon composite(GN/HCPC)by one-pot carbonization of hyper-cross-linked polymer(HCP)and glucose.The composite combined the advantages of graphene(GN)and hyper-cross-linked porous carbon(HCPC),leading to high specific surface area(396.93 m^2/g)and large total pore volume(0.413 cm^3/g).The resulting GN/HCPC composite was applied as an adsorbent to remove 2,4-dichlorophenol(2,4-DCP)from aqueous solutions.The influence of different solution conditions including pH,ionic strength,contact time,system temperature and concentration of humic acid was determined.The maximum adsorption capacity of GN/HCPC composite(calculated by the Langmuir model)could reach 348.43 mg/g,which represented increases of 43.6%and 13.6%over those of the as-prepared pure GN and HCPC,respectively.The Langmuir model and pseudo-second-order kinetic model were found to fit well with the adsorption process.Thermodynamic experiments suggested that the adsorption proceeded spontaneously and endothermically.In addition,the GN/HCPC composite showed high adsorption performance toward other organic contaminants including tetracycline,bisphenol A and phenol.Measurement of the adsorption capability of GN/HCPC in secondary effluent revealed a slight decrease over that in pure water solution.This study demonstrated that the GN/HCPC composite can be utilized as a practical and efficient adsorbent for the removal of organic contaminants in wastewater.