Objective: Epithelial-mesenchymal transition (EMT) is a critical early event for the invasion and metastasis of many carcinomas. In the present study, we examined EMT markers in the residual cancer cells of hepatocell...Objective: Epithelial-mesenchymal transition (EMT) is a critical early event for the invasion and metastasis of many carcinomas. In the present study, we examined EMT markers in the residual cancer cells of hepatocellular carcinoma (HCC) after radiotherapy. Methods: Eight patients with large HCC who underwent hepatectomy with preoperative radiothera- py were studied. The expressions of E-cadherin and vimentin were determined immunohistochemically in the residual cancer cells of HCC following radiotherapy, and also in the pre-radiotherapy biopsy cancer cells. Results: Histological analysis showed that some residual cancer cells of HCC displayed an elongated spindle or fibroblast-like shape. The expression of E- cadherin was markedly reduced or negative in the spindle residual cancer cells, but the expression of vimentin significantly in- duced. However, the above changes were not found in the pre-radiotherapy biopsy cancer cells. Conclusion: EMT is induced in the residual cancer cells of HCC following radiotherapy, which may facilitate the systemic dissemination of cancer cells.展开更多
Epithelial-mesenchymal transition(EMT) and mesenchymal-epithelial transition(MET) are essential for embryonic development and also important in cancer progression. In a conventional model, epithelial-like cancer c...Epithelial-mesenchymal transition(EMT) and mesenchymal-epithelial transition(MET) are essential for embryonic development and also important in cancer progression. In a conventional model, epithelial-like cancer cells transit to mesenchymal-like tumor cells with great motility via EMT transcription factors; these mesenchymallike cells migrate through the circulation system, relocate to a suitable site and then convert back to an epithelial-like phenotype to regenerate the tumor. However, recent findings challenge this conventional model and support the existence of a stable hybrid epithelial/mesenchymal(E/M) tumor population. Hybrid E/M tumor cells exhibit both epithelial and mesenchymal properties, possess great metastatic and tumorigenic capacity and are associated with poorer patient prognosis. The hybrid E/M model and associated regulatory networks represent a conceptual change regarding tumor metastasis and organ colonization. It may lead to the development of novel treatment strategies to ultimately stop cancer progression and improve disease-free survival.展开更多
Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism...Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism of silica-induced EMT is poorly understood. In the present study, we investigated the role of Snail in silica-induced EMT in human BECs in vitro. Human BECs were treated with silica at various concentrations and incubation times. Then MTr assay, western blot, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) transfection were performed. We found that silica increased the expression and DNA binding activity of Snail in human BECs. SNAI silica-induced expression siRNA upregulated the siRNA inhibited the of Snail. Moreover, SNAI expression of epithelial marker E-cadherin, but attenuated the expression of mesenchymal marker a-smooth muscle actin and vimentin in silica-stimulated cells. These results suggest that Snail mediates the silica-induced EMT in human BECs.展开更多
At some point in the natural course of colorectal cancer up to 50% of patients will develop metastasis to the liver and it is one of the most critical effects for patient prognosis. The incidence of synchronous liver ...At some point in the natural course of colorectal cancer up to 50% of patients will develop metastasis to the liver and it is one of the most critical effects for patient prognosis. The incidence of synchronous liver metastasis has been detected at around 20% - 25%, but the optimal timing of surgical resection remains controversial. Neoadjuvant chemotherapy has also been found to be beneficial not only for initially unresectable but also resectable synchronous metastases. Then, traditional surgical strategies of hepatic resection in accordance with past chemotherapeutic regimens have been used decreasingly over the past several years. This review will primarily discuss treatments in association with the recent developed chemotherapeutic regimens and surgical procedure from the clinical data and the concept for epithetlial-mesenchymal transition, which has recently been studied to elucidate mechanisms of the liver metastatic process.展开更多
Objective: To investigate the effect of Rapamycin on epithelial-mesenchymal transition(EMT) of LoVo colonic adenocarcinoma cells in vitro. Methods:Cultured LoVo colonic adenocarcinoma cells were divided into three...Objective: To investigate the effect of Rapamycin on epithelial-mesenchymal transition(EMT) of LoVo colonic adenocarcinoma cells in vitro. Methods:Cultured LoVo colonic adenocarcinoma cells were divided into three groups: negative control group, EMT-inducing group(TGF-β1) and EMT-interfering group(TGF-β1 plus Rapamycin). E-cadherin expression in LoVo cells was detected by Western Blot, while the expression of vimentin was evaluated through immunocytochemistry. The Snail mRNA in LoVo cells was examined by RT- PCR. Results:TGF-β1 induced LoVo cell switching from polygonal to spindle-shaped. TGF-β1 enhanced the expression of vimentin, but lowered the level of E-cadhefin. In contrast, Rapamycin impaired the transition induced by TGF-β1. Rapamycin dramatically abrogated TGF-β1-induced vimentin expression and restored E-cadherin expression in LoVo cells. Rapamycin significantly repressed the upregulation of Snail mRNA expression induced by TGF-β1. Conclusion:Rapamycin dramatically abrogated TGF-β1 induced Snail mRNA expression in LoVo cells, hence inhibiting EMT of these cells in vitro.展开更多
Colorectal cancer(CRC) is the second most common cause of cancer death worldwide. Distant metastasis is the major cause of death in patients with CRC. During progression to metastasis in which malignant cells dissemin...Colorectal cancer(CRC) is the second most common cause of cancer death worldwide. Distant metastasis is the major cause of death in patients with CRC. During progression to metastasis in which malignant cells disseminate from the primary tumor to seeding other organs, a multistep process is involved. Cancer cells proliferate, invade microenvironment, enter into the blood circulation, then survive and colonize into distant organs. Micro RNAs(mi RNAs) and epithelial-mesenchymal transition(EMT) are key regulators and mechanism in tumorigenesis and cancer metastasis. We review the roles of EMT and micro RNAs, especially EMT related micro RNAs in the metastatic pathway of CRC. Micro RNAs provide us a set of potential therapeutic applications and molecular target for CRC.展开更多
Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during rad...Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during radiation-induced Epithelium-to-mesenchymal transition(EMT).Methods TGF-β1 or IR was used to induce EMT.After mi R-663 a transfection,cell migration and cell morphological changes were detected and the expression levels of mi R-663 a,TGF-β1,and EMT-related factors were quantified.Results Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-β1 or radiation were suppressed by mi R-663 a.Furthermore,both X-ray and carbon ion irradiation resulted in the upregulation of TGF-β1 and downregulation of mi R-663 a,while the silencing of TGF-β1 by mi R-663 a reversed the EMT process after radiation.Conclusion Our findings demonstrate an EMT-suppressing effect by mi R-663 a via TGF-β1 in radiationinduced EMT.展开更多
Objective The aim of this study was to determine Neuropilin 1(NRP1)contribution to transforming growth factorβ1(TGF-β1)-induced epithelial mesenchymal transition(EMT)of HGC-27 gastric cancer cells and study its mech...Objective The aim of this study was to determine Neuropilin 1(NRP1)contribution to transforming growth factorβ1(TGF-β1)-induced epithelial mesenchymal transition(EMT)of HGC-27 gastric cancer cells and study its mechanism.Methods In this study,TGF-β1 was used to induce EMT in HGC-27 cells.Further,these cells were stably transfected with siRNA targeting NRP1.Wound healing and transwell assays were used to measure cell migration and invasion,respectively.NRP1 and EMT markers were measured using quantitative real time reverse transcription polymerase chain reaction and western blotting.Results Exposure of TGF-β1 conferred a fibroblastic-like shape to cancer cells and significantly increased the expression of NRP1 in HGC-27 cells.TGF-β1 subsequently promoted migration and invasion of HGC-27 cells.Furthermore,silencing NRP1 inhibited the invasion and migration of TGF-β1-induced cells undergoing EMT.Conclusion Silencing NRP1 can inhibit cell migration,invasion,and metastasis and reverse the TGF-β1-induced EMT process of gastric cancer.展开更多
Background:Bladder cancer is a highly prevalent and lethal malignant tumor characterized by frequent mutations/deletions of lysine-specific demethylase 6A(KDM6A),which is suggested to be a key event in cancer progress...Background:Bladder cancer is a highly prevalent and lethal malignant tumor characterized by frequent mutations/deletions of lysine-specific demethylase 6A(KDM6A),which is suggested to be a key event in cancer progression and metastasis.Beta-elemene has been shown to inhibit metastasis and growth of various tumors,but its effect on KDM6A-null bladder cancer cells remains unknown.Objective:This study aimed to investigate the potential and molecular mechanism ofβ-elemene in inhibiting the growth of KDM6A-null bladder cancer.Methods:This study examined the migration ability and viability of RT-4(KDM6A wild-type)and KU19-19(KDM6A-null)cell lines using wound healing assay and CCK-8,respectively.The inhibitory effect ofβ-elemene on KU19-19 cell migration was evaluated using transwell and immunofluorescence assays,and the expression of transfer-related proteins and genes was analyzed through western blot and qRT-PCR,respectively.Molecular docking was performed to predict the targeting ofβ-elemene,and the effects were confirmed in KDM6Aknockdown RT-4 cells.Finally,the therapeutic effect ofβ-elemene on bladder cancer was tested in animal models.Results:The study observed that loss of KDM6A increased bladder cancer cell migration,with KU19-19 exhibiting significantly stronger migration than RT-4.Further investigation revealed thatβ-elemene effectively inhibited KU19-19 cell migration,likely through targeting EZH2 as determined by molecular docking.Overexpression of KDM6A inhibited KU19-19 metastasis,while knockdown of KDM6A in RT-4 cells enhanced cell migration,which was reversed byβ-elemene treatment.Notably,in vivo testing revealed a significant suppression of KU19-19 cell growth withβ-elemene administered at a dosage of 100 mg/kg.Conclusion:β-elemene has the potential to suppress the growth of KDM6A-null bladder cancer by inhibiting epithelial-mesenchymal transition(EMT),which could make it a promising therapeutic option for patients with KDM6A-null bladder cancer.展开更多
基金Supported by grants from the Natural Science Foundation of China (No.81000998)New Teachers Foundation of Ministry of Education of China (No. 20090141120003)
文摘Objective: Epithelial-mesenchymal transition (EMT) is a critical early event for the invasion and metastasis of many carcinomas. In the present study, we examined EMT markers in the residual cancer cells of hepatocellular carcinoma (HCC) after radiotherapy. Methods: Eight patients with large HCC who underwent hepatectomy with preoperative radiothera- py were studied. The expressions of E-cadherin and vimentin were determined immunohistochemically in the residual cancer cells of HCC following radiotherapy, and also in the pre-radiotherapy biopsy cancer cells. Results: Histological analysis showed that some residual cancer cells of HCC displayed an elongated spindle or fibroblast-like shape. The expression of E- cadherin was markedly reduced or negative in the spindle residual cancer cells, but the expression of vimentin significantly in- duced. However, the above changes were not found in the pre-radiotherapy biopsy cancer cells. Conclusion: EMT is induced in the residual cancer cells of HCC following radiotherapy, which may facilitate the systemic dissemination of cancer cells.
基金supported by operating grants from Canadian Breast Cancer Foundation-Ontario Regionthe Canadian Institutes of Health Research MOP111224 to LW
文摘Epithelial-mesenchymal transition(EMT) and mesenchymal-epithelial transition(MET) are essential for embryonic development and also important in cancer progression. In a conventional model, epithelial-like cancer cells transit to mesenchymal-like tumor cells with great motility via EMT transcription factors; these mesenchymallike cells migrate through the circulation system, relocate to a suitable site and then convert back to an epithelial-like phenotype to regenerate the tumor. However, recent findings challenge this conventional model and support the existence of a stable hybrid epithelial/mesenchymal(E/M) tumor population. Hybrid E/M tumor cells exhibit both epithelial and mesenchymal properties, possess great metastatic and tumorigenic capacity and are associated with poorer patient prognosis. The hybrid E/M model and associated regulatory networks represent a conceptual change regarding tumor metastasis and organ colonization. It may lead to the development of novel treatment strategies to ultimately stop cancer progression and improve disease-free survival.
基金supported by the National Natural Science Foundation of China(No.30700661,81170023,81470266)China Postdoctoral Science Foundation(2014M562139)Hunan Province Natural Science Foundation(14JJ2041)
文摘Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism of silica-induced EMT is poorly understood. In the present study, we investigated the role of Snail in silica-induced EMT in human BECs in vitro. Human BECs were treated with silica at various concentrations and incubation times. Then MTr assay, western blot, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) transfection were performed. We found that silica increased the expression and DNA binding activity of Snail in human BECs. SNAI silica-induced expression siRNA upregulated the siRNA inhibited the of Snail. Moreover, SNAI expression of epithelial marker E-cadherin, but attenuated the expression of mesenchymal marker a-smooth muscle actin and vimentin in silica-stimulated cells. These results suggest that Snail mediates the silica-induced EMT in human BECs.
文摘At some point in the natural course of colorectal cancer up to 50% of patients will develop metastasis to the liver and it is one of the most critical effects for patient prognosis. The incidence of synchronous liver metastasis has been detected at around 20% - 25%, but the optimal timing of surgical resection remains controversial. Neoadjuvant chemotherapy has also been found to be beneficial not only for initially unresectable but also resectable synchronous metastases. Then, traditional surgical strategies of hepatic resection in accordance with past chemotherapeutic regimens have been used decreasingly over the past several years. This review will primarily discuss treatments in association with the recent developed chemotherapeutic regimens and surgical procedure from the clinical data and the concept for epithetlial-mesenchymal transition, which has recently been studied to elucidate mechanisms of the liver metastatic process.
基金supported by National Natural science foundation of China (No.30772128)
文摘Objective: To investigate the effect of Rapamycin on epithelial-mesenchymal transition(EMT) of LoVo colonic adenocarcinoma cells in vitro. Methods:Cultured LoVo colonic adenocarcinoma cells were divided into three groups: negative control group, EMT-inducing group(TGF-β1) and EMT-interfering group(TGF-β1 plus Rapamycin). E-cadherin expression in LoVo cells was detected by Western Blot, while the expression of vimentin was evaluated through immunocytochemistry. The Snail mRNA in LoVo cells was examined by RT- PCR. Results:TGF-β1 induced LoVo cell switching from polygonal to spindle-shaped. TGF-β1 enhanced the expression of vimentin, but lowered the level of E-cadhefin. In contrast, Rapamycin impaired the transition induced by TGF-β1. Rapamycin dramatically abrogated TGF-β1-induced vimentin expression and restored E-cadherin expression in LoVo cells. Rapamycin significantly repressed the upregulation of Snail mRNA expression induced by TGF-β1. Conclusion:Rapamycin dramatically abrogated TGF-β1 induced Snail mRNA expression in LoVo cells, hence inhibiting EMT of these cells in vitro.
基金Supported by a grant from the National Natural Sciences Foundation of China(No.81302131)Natural Science Foundation of Hubei Province,China(No.2012FKB04432)
文摘Colorectal cancer(CRC) is the second most common cause of cancer death worldwide. Distant metastasis is the major cause of death in patients with CRC. During progression to metastasis in which malignant cells disseminate from the primary tumor to seeding other organs, a multistep process is involved. Cancer cells proliferate, invade microenvironment, enter into the blood circulation, then survive and colonize into distant organs. Micro RNAs(mi RNAs) and epithelial-mesenchymal transition(EMT) are key regulators and mechanism in tumorigenesis and cancer metastasis. We review the roles of EMT and micro RNAs, especially EMT related micro RNAs in the metastatic pathway of CRC. Micro RNAs provide us a set of potential therapeutic applications and molecular target for CRC.
基金funded by the National Natural Science Foundation of China[no.U1932208,YANG Kai]the Science and Technology Research Project of Gansu Province[no.17JR5RA307 and 145RTSA012,WANG Ju Fang]the Science and Technology Research Project of Gansu Province[no.21JR7RA108,DING Nan]
文摘Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during radiation-induced Epithelium-to-mesenchymal transition(EMT).Methods TGF-β1 or IR was used to induce EMT.After mi R-663 a transfection,cell migration and cell morphological changes were detected and the expression levels of mi R-663 a,TGF-β1,and EMT-related factors were quantified.Results Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-β1 or radiation were suppressed by mi R-663 a.Furthermore,both X-ray and carbon ion irradiation resulted in the upregulation of TGF-β1 and downregulation of mi R-663 a,while the silencing of TGF-β1 by mi R-663 a reversed the EMT process after radiation.Conclusion Our findings demonstrate an EMT-suppressing effect by mi R-663 a via TGF-β1 in radiationinduced EMT.
基金Supported by grants from Returning Overseas Students(No.CY201721).
文摘Objective The aim of this study was to determine Neuropilin 1(NRP1)contribution to transforming growth factorβ1(TGF-β1)-induced epithelial mesenchymal transition(EMT)of HGC-27 gastric cancer cells and study its mechanism.Methods In this study,TGF-β1 was used to induce EMT in HGC-27 cells.Further,these cells were stably transfected with siRNA targeting NRP1.Wound healing and transwell assays were used to measure cell migration and invasion,respectively.NRP1 and EMT markers were measured using quantitative real time reverse transcription polymerase chain reaction and western blotting.Results Exposure of TGF-β1 conferred a fibroblastic-like shape to cancer cells and significantly increased the expression of NRP1 in HGC-27 cells.TGF-β1 subsequently promoted migration and invasion of HGC-27 cells.Furthermore,silencing NRP1 inhibited the invasion and migration of TGF-β1-induced cells undergoing EMT.Conclusion Silencing NRP1 can inhibit cell migration,invasion,and metastasis and reverse the TGF-β1-induced EMT process of gastric cancer.
基金various sources,including Zhejiang Provincial Natural Science Foundation of China(grant No.LQ20H160013,LQ21H160038,and LY23H160026)the Science and Technology Development Fund,Macao SAR(File No.:0098/2021/A2).
文摘Background:Bladder cancer is a highly prevalent and lethal malignant tumor characterized by frequent mutations/deletions of lysine-specific demethylase 6A(KDM6A),which is suggested to be a key event in cancer progression and metastasis.Beta-elemene has been shown to inhibit metastasis and growth of various tumors,but its effect on KDM6A-null bladder cancer cells remains unknown.Objective:This study aimed to investigate the potential and molecular mechanism ofβ-elemene in inhibiting the growth of KDM6A-null bladder cancer.Methods:This study examined the migration ability and viability of RT-4(KDM6A wild-type)and KU19-19(KDM6A-null)cell lines using wound healing assay and CCK-8,respectively.The inhibitory effect ofβ-elemene on KU19-19 cell migration was evaluated using transwell and immunofluorescence assays,and the expression of transfer-related proteins and genes was analyzed through western blot and qRT-PCR,respectively.Molecular docking was performed to predict the targeting ofβ-elemene,and the effects were confirmed in KDM6Aknockdown RT-4 cells.Finally,the therapeutic effect ofβ-elemene on bladder cancer was tested in animal models.Results:The study observed that loss of KDM6A increased bladder cancer cell migration,with KU19-19 exhibiting significantly stronger migration than RT-4.Further investigation revealed thatβ-elemene effectively inhibited KU19-19 cell migration,likely through targeting EZH2 as determined by molecular docking.Overexpression of KDM6A inhibited KU19-19 metastasis,while knockdown of KDM6A in RT-4 cells enhanced cell migration,which was reversed byβ-elemene treatment.Notably,in vivo testing revealed a significant suppression of KU19-19 cell growth withβ-elemene administered at a dosage of 100 mg/kg.Conclusion:β-elemene has the potential to suppress the growth of KDM6A-null bladder cancer by inhibiting epithelial-mesenchymal transition(EMT),which could make it a promising therapeutic option for patients with KDM6A-null bladder cancer.