A low-noise readout integrated circuit for high-energy particle detector is presented.The noise of charge sensitive amplifier was suppressed by using single-side amplifier and resistors as source degeneration.Continuo...A low-noise readout integrated circuit for high-energy particle detector is presented.The noise of charge sensitive amplifier was suppressed by using single-side amplifier and resistors as source degeneration.Continuous-time semi-Gaussian filter is chosen to avoid switch noise.The peaking time of pulse shaper and the gain can be programmed to satisfy multi-application.The readout integrated circuit has been designed and fabricated using a 0.35 μm double-poly triple-metal CMOS technology.Test results show the functions of the readout integrated circuit are correct.The equivalent noise charge with no detector connected is 500–700 e in the typical mode,the gain is tunable within 13–130 mV/fC and the peaking time varies from 0.7 to 1.6 μs,in which the average gain is about 20.5 mV/fC,and the linearity reaches 99.2%.展开更多
In this paper, the design of a novel low-noise front-end readout circuit for Cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors is described. The front-end readout circuits include the charge sensitive amplifi...In this paper, the design of a novel low-noise front-end readout circuit for Cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors is described. The front-end readout circuits include the charge sensitive amplifier (CSA) and the CR-RC shaper is implemented in TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 4.9 mm × 2.2 mm. The simulation results show that, the noise performance is 46 electrons + 10 electrons/pF, and power consumption is 1.65 mW per channel.展开更多
Integrated circuits of deep submicron(DSM) CMOS technology are advantageous in volume density, power consumption and thermal noise for multichannel particle detection systems,but there are challenges in the front-end ...Integrated circuits of deep submicron(DSM) CMOS technology are advantageous in volume density, power consumption and thermal noise for multichannel particle detection systems,but there are challenges in the front-end circuit design.In this paper,we present a 0.18μm CMOS front-end readout circuit for low noise CdZnTe detectors in tens of pF capacitance.Solutions to the noise and gate leak problems in DSM technologies are discussed in detail.A prototype chip was designed,with a charge sensitive preamplifier,a 4th order semi-Gaussian shaper and several output drivers.Test results show that the chip has an equivalent noise charge of 164 e,without connecting it to a detector,with an integral nonlinearity of<0.21%and differential nonlinearity of<3.75%.展开更多
Purpose HPGe detectors can be used for both dark matter search and neutrinoless double beta decay experiments.However,signal amplitudes of these two experiments are quite different.This paper presents the development ...Purpose HPGe detectors can be used for both dark matter search and neutrinoless double beta decay experiments.However,signal amplitudes of these two experiments are quite different.This paper presents the development of a wide dynamic range CMOS preamplifier for HPGe detectors,which can also be used for low light level photon detection.Methods The structure of a dual-stage dual-gain amplifier was adopted to receive the signals with charges ranging from~0.01 fC to 500 fC.A novel“pre-reset”technique has been proposed to reduce the dead time ratio for large signals.A prototype chip was fabricated and tested.Results A minimum ENC of 43 electrons has been achieved for the high-gain channel at 77 K and the maximum charge of the input signal could be up to 500 fC for the low-gain channel,corresponding to a dynamic range above 90 dB.Conclusions The dual-gain structure of the preamplifier and the“pre-reset”method have been successfully verified,which can be used for HPGe detectors for dark matter and neutrino experiments in the future.展开更多
A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated...A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit.In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers,and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation.The measured results show smooth V-Φcharacteristics and a swing voltage that increases linearly with increasing SQUID cell number N.A white flux noise level as low as 0.28μφ;/Hz;is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz;.We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.展开更多
In this paper,we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit(ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in spa...In this paper,we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit(ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications.The readout channel is comprised of a charge sensitive amplifier,a CR-RC shaping amplifier,an analog output buffer,a fast shaper,and a discriminator.An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology,the die size of the prototype chip is 2.2×2.2 mm^2.The input energy range is from 5 to 350 keV.For this 8-channel prototype ASIC,the measured electrical characteristics are as follows:the overall gain of the readout channel is 210 V/pC,the linearity error is less than 2%,the crosstalk is less than 0.36%,The equivalent noise charge of a typical channel is 52.9 e^- at zero farad plus 8.2 e^- per picofarad,and the power consumption is less than 2.4 mW/channel.Through the measurement together with a CdZnTe detector,the energy resolution is 5.9%at the 59.5-keV line under the irradiation of the radioactive source ^(241)Am.The radiation effect experiments show that the proposed ASIC can resist the total ionization dose(TID) irradiation of higher than200 krad(Si).展开更多
针对锰钴镍氧化物薄膜型红外探测器的结构特点,提出了一种红外探测器低频噪声长时间监测系统设计方案,并进行了测试验证。监测系统采用低噪声偏置电源激发红外探测器的低频噪声,然后将该低频噪声信号通过设计的高性能前置放大器放大,利...针对锰钴镍氧化物薄膜型红外探测器的结构特点,提出了一种红外探测器低频噪声长时间监测系统设计方案,并进行了测试验证。监测系统采用低噪声偏置电源激发红外探测器的低频噪声,然后将该低频噪声信号通过设计的高性能前置放大器放大,利用基于PC的硬件平台采集放大后的噪声信号,最后通过编写的算法提取噪声信号的各种参量。实际测试结果表明,该监测系统能在10 k Hz的采样率下连续30 d不间断采集探测器的低频噪声,并实时计算噪声信号的峰峰值、均方值、功率谱密度等参数,频率分辨率可达到0.05 Hz。展开更多
红外焦平面的数字读出是信息化发展的必然方向,其关键技术是数字读出电路。介绍了数字读出电路的发展现状和主要架构,重点分析了时间噪声和空间噪声的来源和影响,并给出低噪声设计指导。同时对线性度、动态范围和帧频等主要性能进行了讨...红外焦平面的数字读出是信息化发展的必然方向,其关键技术是数字读出电路。介绍了数字读出电路的发展现状和主要架构,重点分析了时间噪声和空间噪声的来源和影响,并给出低噪声设计指导。同时对线性度、动态范围和帧频等主要性能进行了讨论,设计了两款数字读出电路。采用列级ADC数字读出架构设计了640×512数字焦平面探测器读出电路,读出噪声测试结果为150μV,互连中波探测器测试NETD为13 m K。基于数字像元读出架构设计了384×288数字焦平面探测器读出电路,互连长波探测器测试NETD小于4 m K,动态范围超过90 dB,帧频达到1000 Hz。所设计的两款读出电路有效提升了红外焦平面的灵敏度、动态范围和帧频等性能,表明数字读出电路技术对红外探测器性能的提升具有重要作用。展开更多
微光/红外图像彩色融合是目前国内外夜视技术的重要发展方向,在超低照度下(环境照度小于2×10-3 lux),由于成像器件限制,微光图像具有低信噪比、低对比度等特点,导致目标难以辨识,成为制约彩色夜视技术的关键。为了提高目标的探测...微光/红外图像彩色融合是目前国内外夜视技术的重要发展方向,在超低照度下(环境照度小于2×10-3 lux),由于成像器件限制,微光图像具有低信噪比、低对比度等特点,导致目标难以辨识,成为制约彩色夜视技术的关键。为了提高目标的探测和识别率,提出了一种基于卷积自编码网络的微光图像复原方法,利用卷积自编码网络从微光图像训练集中学习超低照度下微光图像特征,实现去噪和对比度增强。实验结果表明,本文提出的方法得到的峰值信噪比(Peak Signal to Noise Ratio,PSNR)较经典的BM3D算法平均提高1.67dB,结构相似度(Structural Similarity Index,SSIM)的值平均提高0.063,均方根对比度的值(Root Mean Square Contrast,RMSC)平均提高0.19。对微光图像复原具有很好的效果,能够有效地提高信噪比和对比度水平。展开更多
基金Supported by the National Natural Science Foundation of China (No.40704025)
文摘A low-noise readout integrated circuit for high-energy particle detector is presented.The noise of charge sensitive amplifier was suppressed by using single-side amplifier and resistors as source degeneration.Continuous-time semi-Gaussian filter is chosen to avoid switch noise.The peaking time of pulse shaper and the gain can be programmed to satisfy multi-application.The readout integrated circuit has been designed and fabricated using a 0.35 μm double-poly triple-metal CMOS technology.Test results show the functions of the readout integrated circuit are correct.The equivalent noise charge with no detector connected is 500–700 e in the typical mode,the gain is tunable within 13–130 mV/fC and the peaking time varies from 0.7 to 1.6 μs,in which the average gain is about 20.5 mV/fC,and the linearity reaches 99.2%.
文摘In this paper, the design of a novel low-noise front-end readout circuit for Cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors is described. The front-end readout circuits include the charge sensitive amplifier (CSA) and the CR-RC shaper is implemented in TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 4.9 mm × 2.2 mm. The simulation results show that, the noise performance is 46 electrons + 10 electrons/pF, and power consumption is 1.65 mW per channel.
基金supported by the National Natural Science Foundation of China (No.61006021)
文摘Integrated circuits of deep submicron(DSM) CMOS technology are advantageous in volume density, power consumption and thermal noise for multichannel particle detection systems,but there are challenges in the front-end circuit design.In this paper,we present a 0.18μm CMOS front-end readout circuit for low noise CdZnTe detectors in tens of pF capacitance.Solutions to the noise and gate leak problems in DSM technologies are discussed in detail.A prototype chip was designed,with a charge sensitive preamplifier,a 4th order semi-Gaussian shaper and several output drivers.Test results show that the chip has an equivalent noise charge of 164 e,without connecting it to a detector,with an integral nonlinearity of<0.21%and differential nonlinearity of<3.75%.
基金supported in part by NSFC under Grant 11975140 and in part by the National Key Research and Development Project under Grant 2017YFA0402202.
文摘Purpose HPGe detectors can be used for both dark matter search and neutrinoless double beta decay experiments.However,signal amplitudes of these two experiments are quite different.This paper presents the development of a wide dynamic range CMOS preamplifier for HPGe detectors,which can also be used for low light level photon detection.Methods The structure of a dual-stage dual-gain amplifier was adopted to receive the signals with charges ranging from~0.01 fC to 500 fC.A novel“pre-reset”technique has been proposed to reduce the dead time ratio for large signals.A prototype chip was fabricated and tested.Results A minimum ENC of 43 electrons has been achieved for the high-gain channel at 77 K and the maximum charge of the input signal could be up to 500 fC for the low-gain channel,corresponding to a dynamic range above 90 dB.Conclusions The dual-gain structure of the preamplifier and the“pre-reset”method have been successfully verified,which can be used for HPGe detectors for dark matter and neutrino experiments in the future.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0304003)。
文摘A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit.In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers,and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation.The measured results show smooth V-Φcharacteristics and a swing voltage that increases linearly with increasing SQUID cell number N.A white flux noise level as low as 0.28μφ;/Hz;is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz;.We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.
基金supported by the National Key Scientific Instrument and Equipment Development Project(No.2011YQ040082)the National Natural Science Foundation of China(Nos.11475136,11575144,61176094)the Shaanxi Natural Science Foundation of China(No.2015JM1016)
文摘In this paper,we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit(ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications.The readout channel is comprised of a charge sensitive amplifier,a CR-RC shaping amplifier,an analog output buffer,a fast shaper,and a discriminator.An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology,the die size of the prototype chip is 2.2×2.2 mm^2.The input energy range is from 5 to 350 keV.For this 8-channel prototype ASIC,the measured electrical characteristics are as follows:the overall gain of the readout channel is 210 V/pC,the linearity error is less than 2%,the crosstalk is less than 0.36%,The equivalent noise charge of a typical channel is 52.9 e^- at zero farad plus 8.2 e^- per picofarad,and the power consumption is less than 2.4 mW/channel.Through the measurement together with a CdZnTe detector,the energy resolution is 5.9%at the 59.5-keV line under the irradiation of the radioactive source ^(241)Am.The radiation effect experiments show that the proposed ASIC can resist the total ionization dose(TID) irradiation of higher than200 krad(Si).
文摘针对锰钴镍氧化物薄膜型红外探测器的结构特点,提出了一种红外探测器低频噪声长时间监测系统设计方案,并进行了测试验证。监测系统采用低噪声偏置电源激发红外探测器的低频噪声,然后将该低频噪声信号通过设计的高性能前置放大器放大,利用基于PC的硬件平台采集放大后的噪声信号,最后通过编写的算法提取噪声信号的各种参量。实际测试结果表明,该监测系统能在10 k Hz的采样率下连续30 d不间断采集探测器的低频噪声,并实时计算噪声信号的峰峰值、均方值、功率谱密度等参数,频率分辨率可达到0.05 Hz。
文摘红外焦平面的数字读出是信息化发展的必然方向,其关键技术是数字读出电路。介绍了数字读出电路的发展现状和主要架构,重点分析了时间噪声和空间噪声的来源和影响,并给出低噪声设计指导。同时对线性度、动态范围和帧频等主要性能进行了讨论,设计了两款数字读出电路。采用列级ADC数字读出架构设计了640×512数字焦平面探测器读出电路,读出噪声测试结果为150μV,互连中波探测器测试NETD为13 m K。基于数字像元读出架构设计了384×288数字焦平面探测器读出电路,互连长波探测器测试NETD小于4 m K,动态范围超过90 dB,帧频达到1000 Hz。所设计的两款读出电路有效提升了红外焦平面的灵敏度、动态范围和帧频等性能,表明数字读出电路技术对红外探测器性能的提升具有重要作用。
文摘微光/红外图像彩色融合是目前国内外夜视技术的重要发展方向,在超低照度下(环境照度小于2×10-3 lux),由于成像器件限制,微光图像具有低信噪比、低对比度等特点,导致目标难以辨识,成为制约彩色夜视技术的关键。为了提高目标的探测和识别率,提出了一种基于卷积自编码网络的微光图像复原方法,利用卷积自编码网络从微光图像训练集中学习超低照度下微光图像特征,实现去噪和对比度增强。实验结果表明,本文提出的方法得到的峰值信噪比(Peak Signal to Noise Ratio,PSNR)较经典的BM3D算法平均提高1.67dB,结构相似度(Structural Similarity Index,SSIM)的值平均提高0.063,均方根对比度的值(Root Mean Square Contrast,RMSC)平均提高0.19。对微光图像复原具有很好的效果,能够有效地提高信噪比和对比度水平。