期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Image Dehazing Based on Pixel Guided CNN with PAM via Graph Cut
1
作者 Fayadh Alenezi 《Computers, Materials & Continua》 SCIE EI 2022年第5期3425-3443,共19页
Image dehazing is still an open research topic that has been undergoing a lot of development,especially with the renewed interest in machine learning-based methods.A major challenge of the existing dehazing methods is... Image dehazing is still an open research topic that has been undergoing a lot of development,especially with the renewed interest in machine learning-based methods.A major challenge of the existing dehazing methods is the estimation of transmittance,which is the key element of haze-affected imaging models.Conventional methods are based on a set of assumptions that reduce the solution search space.However,the multiplication of these assumptions tends to restrict the solutions to particular cases that cannot account for the reality of the observed image.In this paper we reduce the number of simplified hypotheses in order to attain a more plausible and realistic solution by exploiting a priori knowledge of the ground truth in the proposed method.The proposed method relies on pixel information between the ground truth and haze image to reduce these assumptions.This is achieved by using ground truth and haze image to find the geometric-pixel information through a guided Convolution Neural Networks(CNNs)with a Parallax Attention Mechanism(PAM).It uses the differential pixel-based variance in order to estimate transmittance.The pixel variance uses local and global patches between the assumed ground truth and haze image to refine the transmission map.The transmission map is also improved based on improved Markov random field(MRF)energy functions.We used different images to test the proposed algorithm.The entropy value of the proposed method was 7.43 and 7.39,a percent increase of4.35%and5.42%,respectively,compared to the best existing results.The increment is similar in other performance quality metrics and this validate its superiority compared to other existing methods in terms of key image quality evaluation metrics.The proposed approach’s drawback,an over-reliance on real ground truth images,is also investigated.The proposed method show more details hence yields better images than those from the existing state-of-the-art-methods. 展开更多
关键词 pixel information human visual perception convolution neural network graph cut parallax attention mechanism
下载PDF
Steganalysis of LSB Matching Using Characteristic Function Moment of Pixel Differences 被引量:1
2
作者 Xianyi Chen Guangyong Gao +1 位作者 Dandan Liu Zhihua Xia 《China Communications》 SCIE CSCD 2016年第7期66-73,共8页
Nowadays,many steganographic tools have been developed,and secret messages can be imperceptibly transmitted through public networks.This paper concentrates on steganalysis against spatial least significant bit(LSB) ma... Nowadays,many steganographic tools have been developed,and secret messages can be imperceptibly transmitted through public networks.This paper concentrates on steganalysis against spatial least significant bit(LSB) matching,which is the prototype of many advanced information hiding methods.Many existing algorithms deal with steganalysis problems by using the dependencies between adjacent pixels.From another aspect,this paper calculates the differences among pixel pairs and proves that the histogram of difference values will be smoothed by stego noises.We calculate the difference histogram characteristic function(DHCF) and deduce that the moment of DHCFs(DHCFM) will be diminished after stego bits are hidden in the image.Accordingly,we compute the DHCFMs as the discriminative features.We calibrate the features by decreasing the influence of image content on them and train support vector machine classifiers based on the calibrated features.Experimental results demonstrate that the DHCFMs calculated with nonadjacent pixels are helpful to detect stego messages hidden by LSB matching. 展开更多
关键词 information hiding steganalysis pixel differences nonadjacent pixels SVM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部