In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). T...In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-Ⅱ^- sensors assembled by a 0.35 lm CMOS integrated circuit process.Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signalto-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 lm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 lm pixel size at 1–4σ threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process( ~20 keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 lm at 1–4σ threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.展开更多
The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order...The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order to reduce the computational complexity, we analyze the statistics of results of motion estimation, such as the continuity of best modes of blocks in successive frames and the chance to give up a sub-partition mode (smaller than 16 × 16) after integer-pixel motion estimation, from which we suggest to make mode prediction based on the motion information of the previous frame and skip sub-pixel motion estimation in subpartition mode selectively. According to the experimental result, the proposed algorithm can save 75 % of the computational time with a slight degradation (0.03 dB) on PSNR compared with the pseudocode of fast search motion estimation in JM12.2.展开更多
After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military ...After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military tracking, military reconnaissance, infrared guidance, infrared warning, weather forecasting, and resource detection. Further development in infrared applications requires future HgCdTe infrared detectors to exhibit features such as larger focal plane array format and thus higher imaging resolution. An effective approach to develop HgCdTe infrared detectors with a larger array format size is to develop the small pixel technology. In this article, we present a review on the developmental history and current status of small pixel technology for HgCdTe infrared detectors, as well as the main challenges and potential solutions in developing this technology. It is predicted that the pixel size of long-wave HgCdTe infrared detectors can be reduced to5 μm, while that of mid-wave HgCdTe infrared detectors can be reduced to 3 μm. Although significant progress has been made in this area, the development of small pixel technology for HgCdTe infrared detectors still faces significant challenges such as flip-chip bonding, interconnection, and charge processing capacity of readout circuits. Various approaches have been proposed to address these challenges, including three-dimensional stacking integration and readout circuits based on microelectromechanical systems.展开更多
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized...Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.展开更多
针对自适应中值滤波在窗口迭代过程中存在像素点重复参与运算导致算法复杂度较高的问题,提出了一种改进的中值滤波算法.首先依据有效像素点与窗口中心点间的坐标距离来快速确定最佳滤波窗口尺寸,避免了窗口迭代造成的像素点重复排序;之...针对自适应中值滤波在窗口迭代过程中存在像素点重复参与运算导致算法复杂度较高的问题,提出了一种改进的中值滤波算法.首先依据有效像素点与窗口中心点间的坐标距离来快速确定最佳滤波窗口尺寸,避免了窗口迭代造成的像素点重复排序;之后对窗口内的有效像素点进行取中值操作,有效削弱了噪声点的干扰,进一步提升了图像滤波的质量.经实验验证,与自适应中值滤波算法比较,复杂度显著降低,峰值信噪比(peak signal to noise ratio,PSNR)值平均提高10 d B左右.和同类文献比较在算法复杂度和图像降噪效果间做出了一个较佳的权衡.最后将该算法应用于Kinect深度图降噪上获得了不错的效果.展开更多
基金supported by the National Natural Science Foundation of China(No.U1732271)
文摘In this paper, we study how pixel size influences energy resolution for a proposed pixelated detector—a high sensitivity, low cost, and real-time radon monitor based on a Topmetal-Ⅱ^- time projection chamber(TPC). This monitor was designed to improve spatial resolution for detecting radon alpha particles using Topmetal-Ⅱ^- sensors assembled by a 0.35 lm CMOS integrated circuit process.Owing to concerns that small pixel size might have the side effect of worsening energy resolution due to lower signalto-noise ratio, a Geant4-based simulation was used to investigate the dependence of energy resolution on pixel sizes ranging from 60 to 600 lm. A non-monotonic trend in this region shows the combined effect of pixel size and threshold on pixels, analyzed by introducing an empirical expression. Pixel noise contributes 50 keV full-width at half-maximum energy resolution for 400 lm pixel size at 1–4σ threshold that is comparable to the energy resolution caused by energy fluctuations in the TPC ionization process( ~20 keV). The total energy resolution after combining both factors is estimated to be 54 keV for a pixel size of 400 lm at 1–4σ threshold. The analysis presented in this paper would help choosing suitable pixel size for future pixelated detectors.
基金Sponsored by the National Natural Science Foundation of China(60772066)
文摘The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order to reduce the computational complexity, we analyze the statistics of results of motion estimation, such as the continuity of best modes of blocks in successive frames and the chance to give up a sub-partition mode (smaller than 16 × 16) after integer-pixel motion estimation, from which we suggest to make mode prediction based on the motion information of the previous frame and skip sub-pixel motion estimation in subpartition mode selectively. According to the experimental result, the proposed algorithm can save 75 % of the computational time with a slight degradation (0.03 dB) on PSNR compared with the pseudocode of fast search motion estimation in JM12.2.
文摘After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military tracking, military reconnaissance, infrared guidance, infrared warning, weather forecasting, and resource detection. Further development in infrared applications requires future HgCdTe infrared detectors to exhibit features such as larger focal plane array format and thus higher imaging resolution. An effective approach to develop HgCdTe infrared detectors with a larger array format size is to develop the small pixel technology. In this article, we present a review on the developmental history and current status of small pixel technology for HgCdTe infrared detectors, as well as the main challenges and potential solutions in developing this technology. It is predicted that the pixel size of long-wave HgCdTe infrared detectors can be reduced to5 μm, while that of mid-wave HgCdTe infrared detectors can be reduced to 3 μm. Although significant progress has been made in this area, the development of small pixel technology for HgCdTe infrared detectors still faces significant challenges such as flip-chip bonding, interconnection, and charge processing capacity of readout circuits. Various approaches have been proposed to address these challenges, including three-dimensional stacking integration and readout circuits based on microelectromechanical systems.
基金supported by the National Natural Science Foundation of China,No.31070758,31271060the Natural Science Foundation of Chongqing in China,No.cstc2013jcyj A10085
文摘Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only "see" pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex(the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine(LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern.
文摘针对自适应中值滤波在窗口迭代过程中存在像素点重复参与运算导致算法复杂度较高的问题,提出了一种改进的中值滤波算法.首先依据有效像素点与窗口中心点间的坐标距离来快速确定最佳滤波窗口尺寸,避免了窗口迭代造成的像素点重复排序;之后对窗口内的有效像素点进行取中值操作,有效削弱了噪声点的干扰,进一步提升了图像滤波的质量.经实验验证,与自适应中值滤波算法比较,复杂度显著降低,峰值信噪比(peak signal to noise ratio,PSNR)值平均提高10 d B左右.和同类文献比较在算法复杂度和图像降噪效果间做出了一个较佳的权衡.最后将该算法应用于Kinect深度图降噪上获得了不错的效果.