针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像...针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像元时间序列的相似性;将水体边缘混合像元的DTW距离值设定为参考阈值,采用阈值法提取相似性较高的时间序列数据,其对应的像元即被识别为水体像元;最后利用每个像元的DTW距离值代替其后向散射值,采用8邻域搜索方法提高水体识别的精度。以2008年1—12月获取的25景分辨率为150 m的ENVISAT ASAR图像进行水体像元提取试验,结果表明,该方法的完整率和正确率均较高,能够应用于大范围区域水体的提取与制图。展开更多
文摘针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像元时间序列的相似性;将水体边缘混合像元的DTW距离值设定为参考阈值,采用阈值法提取相似性较高的时间序列数据,其对应的像元即被识别为水体像元;最后利用每个像元的DTW距离值代替其后向散射值,采用8邻域搜索方法提高水体识别的精度。以2008年1—12月获取的25景分辨率为150 m的ENVISAT ASAR图像进行水体像元提取试验,结果表明,该方法的完整率和正确率均较高,能够应用于大范围区域水体的提取与制图。