Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane...Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane patterned sapphire substrates(PSS)by metal organic vapor phase epitaxy(MOVPE).The influences of growth conditions on the surface morphol-ogy are experimentally studied and explained by Wulff constructions.The competition of growth rate among{0001},{1011},and{1122}facets results in the various surface morphologies of GaN.A higher growth temperature of 985 ℃ and a lowerⅤ/Ⅲratio of 25 can expand the area of{}facets in GaN inverted pyramids.On the other hand,GaN inverted pyramids with almost pure{}facets are obtained by using a lower growth temperature of 930℃,a higherⅤ/Ⅲratio of 100,and PSS with pattern arrangement perpendicular to the substrate primary flat.展开更多
As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q...As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.展开更多
Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a...Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental ...Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental study is distinctive due to the implementation of a rotational mechanism within the pyramidal solar still(PSS),which serves to enhance the evaporation and condensation processes.The objective of this research study is to examine the impact of integrating rotational motion into pyramidal solar stills on various processes:water distillation,evaporation,condensation,heat transfer,and energy waste reduction,shadow effects,and low water temperature in saline environments.Ultimately,the study aims to enhance the production of distilled water.An economic evaluation was undertaken in order to ascertain the extent of cost reduction.Experiments measuring freshwater productivity and thermal performance were conducted over a three-month period at the University of Science and Technology in Tehran.The entire pyramid structure was rotated using a direct current motor driven by a photovoltaic cell.The research methodology entailed the operation of a PSS with varying rotational speeds(0.125,0.25,1,and 1.5 rpm)and without rotation,from 9 am to 4 pm.The findings suggested that the productivity of the distillation apparatus in terms of distilled water increased as the rotation speed rose,with the most pronounced increase occurring at 1 rpm in comparison to the other conditions.The presence of turbulence in the water enhanced the heat transfer occurring between the absorber plate and thewater.At 2:00 p.m.on an experimental day,this effect was observed when the absorber plate temperature reached 79.1°C at 1.5 rpm.In contrast,its temperature decreased to 78°C when not in a state of rotation,as the intensity of solar radiation was higher in the non-rotation state.At 1 rpm,the solar pyramid distiller achieved a 30.2%increase in output compared to its non-rotating state.At 1 rpm,the distiller achieved a 20.6%increase in output compared to 0.25 revolutions per minute.In addition to the control condition,the thermal efficiency of the solar still varied as follows:at 1,1.5,0.25,and 0.125 rpm,it was 46.2%;at 44.2%,37.8%;at 35.3%;and at 36.6%,respectively.Furthermore,distilled water generated by a pyramid solar still with rotation(PSSR)is priced at$0.03 per liter,whereas it costs$0.0317 per liter when produced by a pyramid solar still without rotation(PSS without R).展开更多
In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of...In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2).展开更多
作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重...作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡.展开更多
[ Objective] This study was to breed rice cultivars with multi-resistance to Orseolia oryzae (Wood-Mason). [ Method] The Guangxi local cultivar GX-M001 (Jiangchao) with high resistance to Orseolia oryzae (Wood-Ma...[ Objective] This study was to breed rice cultivars with multi-resistance to Orseolia oryzae (Wood-Mason). [ Method] The Guangxi local cultivar GX-M001 (Jiangchao) with high resistance to Orseolia oryzae (Wood-Mason) was used to hybrid with the known resistance cultivars "Kangwenqingzhan" (harboring GM5 gene), OB677( harboring GM3 gene) from Sri Lanka, HT1350 and high yield end quality cultivar " Guiruanzhan". [ Result] Through pyramiding the multi-resistant genes via routine hybridization, the general resistances of the hybrids were remarkably enhanced. The grades of resistance were also improved, many of the combinations were endowed with a resistance at immune level (grade 0) ; and interestingly, the respective hybridization of GX-M001 (high resistance) with OB677( medium resistance) and HT1350(suscepti- ble) also generate two lines at immune level, which is probably the effects of additive effects of genes.[ Conclusion] By routine hybridization, multiple genes were successfully pyramided, thus generating novel rice lines with multiple resistances. For the rice breeding scientists at the grass-roots level, the resistance-resistance pyramiding is an effective approach to breed high resistance cultivars.展开更多
Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grindin...Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.展开更多
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st...Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.展开更多
基金the National Key Research and Development Program(2021YFA0716400)the National Natural Science Foundation of China(62225405,62350002,61991443)+1 种基金the Key R&D Project of Jiangsu Province,China(BE2020004)the Collaborative Innovation Centre of Solid-State Lighting and Energy-Saving Electronics.
文摘Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane patterned sapphire substrates(PSS)by metal organic vapor phase epitaxy(MOVPE).The influences of growth conditions on the surface morphol-ogy are experimentally studied and explained by Wulff constructions.The competition of growth rate among{0001},{1011},and{1122}facets results in the various surface morphologies of GaN.A higher growth temperature of 985 ℃ and a lowerⅤ/Ⅲratio of 25 can expand the area of{}facets in GaN inverted pyramids.On the other hand,GaN inverted pyramids with almost pure{}facets are obtained by using a lower growth temperature of 930℃,a higherⅤ/Ⅲratio of 100,and PSS with pattern arrangement perpendicular to the substrate primary flat.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.
基金supported and founded by the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB311the Youth Science and Technology Talent Growth Project of Guizhou Provincial Education Department under Grant No.QJH-KY-ZK[2021]132+2 种基金the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB319the National Natural Science Foundation of China(NSFC)under Grant 61902085the Key Laboratory Program of Blockchain and Fintech of Department of Education of Guizhou Province(2023-014).
文摘Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.
文摘Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental study is distinctive due to the implementation of a rotational mechanism within the pyramidal solar still(PSS),which serves to enhance the evaporation and condensation processes.The objective of this research study is to examine the impact of integrating rotational motion into pyramidal solar stills on various processes:water distillation,evaporation,condensation,heat transfer,and energy waste reduction,shadow effects,and low water temperature in saline environments.Ultimately,the study aims to enhance the production of distilled water.An economic evaluation was undertaken in order to ascertain the extent of cost reduction.Experiments measuring freshwater productivity and thermal performance were conducted over a three-month period at the University of Science and Technology in Tehran.The entire pyramid structure was rotated using a direct current motor driven by a photovoltaic cell.The research methodology entailed the operation of a PSS with varying rotational speeds(0.125,0.25,1,and 1.5 rpm)and without rotation,from 9 am to 4 pm.The findings suggested that the productivity of the distillation apparatus in terms of distilled water increased as the rotation speed rose,with the most pronounced increase occurring at 1 rpm in comparison to the other conditions.The presence of turbulence in the water enhanced the heat transfer occurring between the absorber plate and thewater.At 2:00 p.m.on an experimental day,this effect was observed when the absorber plate temperature reached 79.1°C at 1.5 rpm.In contrast,its temperature decreased to 78°C when not in a state of rotation,as the intensity of solar radiation was higher in the non-rotation state.At 1 rpm,the solar pyramid distiller achieved a 30.2%increase in output compared to its non-rotating state.At 1 rpm,the distiller achieved a 20.6%increase in output compared to 0.25 revolutions per minute.In addition to the control condition,the thermal efficiency of the solar still varied as follows:at 1,1.5,0.25,and 0.125 rpm,it was 46.2%;at 44.2%,37.8%;at 35.3%;and at 36.6%,respectively.Furthermore,distilled water generated by a pyramid solar still with rotation(PSSR)is priced at$0.03 per liter,whereas it costs$0.0317 per liter when produced by a pyramid solar still without rotation(PSS without R).
文摘In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2).
文摘作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡.
文摘目的为了提高数字水印的鲁棒性和不可见性,提出一种基于Laplacian Pyramid和LWT-QR分解的水印算法。方法首先对宿主图像进行2层Laplacian Pyramid分解,取其第2层Laplacian残差图像进行一层LWT分解,取其低频子带进行大小为4×4的无重叠分块处理。然后,基于提升小波系数的相关属性,再对每个选中的低频子块进行QR分解,取分解后R矩阵的第1行为目标进行水印的嵌入,同时对水印进行Arnold置乱,置乱后的水印图像嵌入到R矩阵的第1行元素中。结果嵌入水印后图像的PSNR能够达到45 d B,而且该方案对常见的信号处理攻击有较好的鲁棒性,NC均值在0.9以上。结论理论分析和大量的实验数据表明,该方案能够很好地改善图像操作过程中的鲁棒性和不可见性。
基金Supported by National Natural Science Foundation of China(30760117)National Key Technology R &D Program (2007BAD68B01)~~
文摘[ Objective] This study was to breed rice cultivars with multi-resistance to Orseolia oryzae (Wood-Mason). [ Method] The Guangxi local cultivar GX-M001 (Jiangchao) with high resistance to Orseolia oryzae (Wood-Mason) was used to hybrid with the known resistance cultivars "Kangwenqingzhan" (harboring GM5 gene), OB677( harboring GM3 gene) from Sri Lanka, HT1350 and high yield end quality cultivar " Guiruanzhan". [ Result] Through pyramiding the multi-resistant genes via routine hybridization, the general resistances of the hybrids were remarkably enhanced. The grades of resistance were also improved, many of the combinations were endowed with a resistance at immune level (grade 0) ; and interestingly, the respective hybridization of GX-M001 (high resistance) with OB677( medium resistance) and HT1350(suscepti- ble) also generate two lines at immune level, which is probably the effects of additive effects of genes.[ Conclusion] By routine hybridization, multiple genes were successfully pyramided, thus generating novel rice lines with multiple resistances. For the rice breeding scientists at the grass-roots level, the resistance-resistance pyramiding is an effective approach to breed high resistance cultivars.
基金Project (BK2009379) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject (1006-56XNA12069) supported by the Nanjing University of Aeronautics and Astronautics Research Funding, China+3 种基金Projects (51172108, 91023020) supported by the National Natural Science Foundation of ChinaProject (IRT0968) supported by the Program for Changjiang Scholars and Innovative Research Team in University, ChinaProject (NCET-10-0070) supported by the Program for New Century Excellent Talents in University, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004)Supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.RS-2022-00155885,Artificial Intelligence Convergence Innovation Human Resources Development(Hanyang University ERICA)).
文摘Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments.