During this research work we developed another approach to digital mapping using the pixelation technic. This unprecedented digital mapping of the basin MSGBC in Senegal required the compilation of numerous geological...During this research work we developed another approach to digital mapping using the pixelation technic. This unprecedented digital mapping of the basin MSGBC in Senegal required the compilation of numerous geological data consisting of seismic lines and oil and hydraulic log reports. These spatial reference data include geological information from the surface to the top of the Campanian. The mapped terrains are composed of the Post-Paleocene Complex (PPC), the Paleocene, the Maastrichtian, and the Campanian. The nearest neighbor method has been used to establish the spatial distribution of the different geological formations. Histograms of values were used to determine the confidence intervals of the mapping. They were used to locate areas of low relative error and to apply the 3D digital mapping technique. For instance, Diender Guedj has been mapped at 1:25,000. The result of this mapping is extracted and processed using the DBMS (MySQL) software. The latter allowed both to determine Paleocene gab and update data. And then the database is processed. The programming languages PHP and Javascript have been used to simulate a website.展开更多
In the past two decades,extensive and in-depth research has been conducted on Time Series InSAR technology with the advancement of high-performance SAR satellites and the accumulation of big SAR data.The introduction ...In the past two decades,extensive and in-depth research has been conducted on Time Series InSAR technology with the advancement of high-performance SAR satellites and the accumulation of big SAR data.The introduction of distributed scatterers in Distributed Scatterers InSAR(DS-InSAR)has significantly expanded the application scenarios of InSAR geodetic measurement by increasing the number of measurement points.This study traces the history of DS-InSAR,presents the definition and characteristics of distributed scatterers,and focuses on exploring the relationships and distinctions among proposed algorithms in two crucial steps:statistically homogeneous pixel selection and phase optimization.Additionally,the latest research progress in this field is tracked and the possible development direction in the future is discussed.Through simulation experiments and two real InSAR case studies,the proposed algorithms are compared and verified,and the advantages of DS-InSAR in deformation measurement practice are demonstrated.This work not only offers insights into current trends and focal points for theoretical research on DS-InSAR but also provides practical cases and guidance for applied research.展开更多
Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the hi...Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the high-resolution online trajectory detection for the Hi’Beam-SEE system,which aims to localize SEE-sensitive positions on the IC at the micrometer scale and in real time.We employed a reparameterization method to accelerate the inference speed,merging the branches of the backbone of the location in the deployment scenario.Additionally,we designed an irregular convolution kernel,an attention mechanism,and a fused loss function to improve the positioning accuracy.OML demonstrates exceptional realtime processing capabilities,achieving a positioning accuracy of 1.83μm in processing data generated by the Hi’Beam-SEE system at 163 frames per second per GPU.展开更多
This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti...This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.展开更多
In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and perfo...In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.展开更多
Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data.This property makes it difficult for steganalysts’powerful data extrac...Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data.This property makes it difficult for steganalysts’powerful data extraction tools to detect the hidden data and ensures high-quality stego image generation.However,using a seed key to generate non-repeated sequential numbers takes a long time because it requires specific mathematical equations.In addition,these numbers may cluster in certain ranges.The hidden data in these clustered pixels will reduce the image quality,which steganalysis tools can detect.Therefore,this paper proposes a data structure that safeguards the steganographic model data and maintains the quality of the stego image.This paper employs the AdelsonVelsky and Landis(AVL)tree data structure algorithm to implement the randomization pixel selection technique for data concealment.The AVL tree algorithm provides several advantages for image steganography.Firstly,it ensures balanced tree structures,which leads to efficient data retrieval and insertion operations.Secondly,the self-balancing nature of AVL trees minimizes clustering by maintaining an even distribution of pixels,thereby preserving the stego image quality.The data structure employs the pixel indicator technique for Red,Green,and Blue(RGB)channel extraction.The green channel serves as the foundation for building a balanced binary tree.First,the sender identifies the colored cover image and secret data.The sender will use the two least significant bits(2-LSB)of RGB channels to conceal the data’s size and associated information.The next step is to create a balanced binary tree based on the green channel.Utilizing the channel pixel indicator on the LSB of the green channel,we can conceal bits in the 2-LSB of the red or blue channel.The first four levels of the data structure tree will mask the data size,while subsequent levels will conceal the remaining digits of secret data.After embedding the bits in the binary tree level by level,the model restores the AVL tree to create the stego image.Ultimately,the receiver receives this stego image through the public channel,enabling secret data recovery without stego or crypto keys.This method ensures that the stego image appears unsuspicious to potential attackers.Without an extraction algorithm,a third party cannot extract the original secret information from an intercepted stego image.Experimental results showed high levels of imperceptibility and security.展开更多
With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and...With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and protect intellectual property rights,this study proposes an innovative color image encryption algorithm.Initially,the Mersenne Twister algorithm is utilized to generate high-quality pseudo-random numbers,establishing a robust basis for subsequent operations.Subsequently,two distinct chaotic systems,the autonomous non-Hamiltonian chaotic system and the tentlogistic-cosine chaotic mapping,are employed to produce chaotic random sequences.These chaotic sequences are used to control the encoding and decoding process of the DNA,effectively scrambling the image pixels.Furthermore,the complexity of the encryption process is enhanced through improved Joseph block scrambling.Thorough experimental verification,research,and analysis,the average value of the information entropy test data reaches as high as 7.999.Additionally,the average value of the number of pixels change rate(NPCR)test data is 99.6101%,which closely approaches the ideal value of 99.6094%.This algorithm not only guarantees image quality but also substantially raises the difficulty of decryption.展开更多
近日,第33届USENIX Security Symposium (USENIX Security 2024)在美国费城召开。西安电子科技大学网络与信息安全学院陈晓峰教授团队的最新研究成果“Pixel+and Pixel++:Compact and Efficient Forward-Secure Multi-Signatures for Po...近日,第33届USENIX Security Symposium (USENIX Security 2024)在美国费城召开。西安电子科技大学网络与信息安全学院陈晓峰教授团队的最新研究成果“Pixel+and Pixel++:Compact and Efficient Forward-Secure Multi-Signatures for Po S Blockchain Consensus”被大会全文录用。该研究成果由西安电子科技大学、南开大学和伍伦贡大学(University of Wollongong)合作完成,第一作者为陈晓峰教授合作指导的博士后魏江宏。展开更多
A three-transistor active pixel sensor and its double sampling readout circuit implemented by a switch capacitor amplifier are designed. The circuit is embedded in a 64 × 64 pixel array CMOS image sensor and succ...A three-transistor active pixel sensor and its double sampling readout circuit implemented by a switch capacitor amplifier are designed. The circuit is embedded in a 64 × 64 pixel array CMOS image sensor and success-fully taped out with a Chartered 0.35μm process. The pixel pitch is 8μm × 8μm with a fill factor of 57%, the photo-sensitivity is 0.8V/(lux · s) ,and the dynamic range is 50dB. Theoretical analysis and test results indicate that as the process is scaled down, a smaller pixel pitch reduces the sensitivity. A deep junction n-well/p-substrate photodiode with a reasonable fill factor and high sensitivity are more appropriate for submicron processes.展开更多
文摘During this research work we developed another approach to digital mapping using the pixelation technic. This unprecedented digital mapping of the basin MSGBC in Senegal required the compilation of numerous geological data consisting of seismic lines and oil and hydraulic log reports. These spatial reference data include geological information from the surface to the top of the Campanian. The mapped terrains are composed of the Post-Paleocene Complex (PPC), the Paleocene, the Maastrichtian, and the Campanian. The nearest neighbor method has been used to establish the spatial distribution of the different geological formations. Histograms of values were used to determine the confidence intervals of the mapping. They were used to locate areas of low relative error and to apply the 3D digital mapping technique. For instance, Diender Guedj has been mapped at 1:25,000. The result of this mapping is extracted and processed using the DBMS (MySQL) software. The latter allowed both to determine Paleocene gab and update data. And then the database is processed. The programming languages PHP and Javascript have been used to simulate a website.
基金National Natural Science Foundation of China(No.42374013)National Key Research and Development Program of China(Nos.2019YFC1509201,2021YFB3900604-03)。
文摘In the past two decades,extensive and in-depth research has been conducted on Time Series InSAR technology with the advancement of high-performance SAR satellites and the accumulation of big SAR data.The introduction of distributed scatterers in Distributed Scatterers InSAR(DS-InSAR)has significantly expanded the application scenarios of InSAR geodetic measurement by increasing the number of measurement points.This study traces the history of DS-InSAR,presents the definition and characteristics of distributed scatterers,and focuses on exploring the relationships and distinctions among proposed algorithms in two crucial steps:statistically homogeneous pixel selection and phase optimization.Additionally,the latest research progress in this field is tracked and the possible development direction in the future is discussed.Through simulation experiments and two real InSAR case studies,the proposed algorithms are compared and verified,and the advantages of DS-InSAR in deformation measurement practice are demonstrated.This work not only offers insights into current trends and focal points for theoretical research on DS-InSAR but also provides practical cases and guidance for applied research.
基金supported by the National Natural Science Foundation of China(Nos.U2032209,12222512,12375193,12305210)the National Key Research and Development Program of China(No.2021YFA1601300)the CAS“Light of West China”Program,the CAS Pioneer Hundred Talent Program,the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008).
文摘Identifying sensitive areas in integrated circuits susceptible to single-event effects(SEE)is crucial for improving radiation hardness.This study presents an online multi-track location(OML)framework to enhance the high-resolution online trajectory detection for the Hi’Beam-SEE system,which aims to localize SEE-sensitive positions on the IC at the micrometer scale and in real time.We employed a reparameterization method to accelerate the inference speed,merging the branches of the backbone of the location in the deployment scenario.Additionally,we designed an irregular convolution kernel,an attention mechanism,and a fused loss function to improve the positioning accuracy.OML demonstrates exceptional realtime processing capabilities,achieving a positioning accuracy of 1.83μm in processing data generated by the Hi’Beam-SEE system at 163 frames per second per GPU.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No.ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No.2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No.KJ2020A0301)。
文摘This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
基金supported by the National Natural Science Foundation of China(Nos.11875274 and U1232202)。
文摘In the research and development of new silicon pixel detectors,a collimated monoenergetic charged-particle test beam equipped with a high-resolution pixel-beam telescope is crucial for prototype verification and performance evaluation.When the beam energy is low,the effect of multiple Coulomb scattering on the measured resolution of the Device Under Test(DUT)must be considered to accurately evaluate the performance of the pixel chips and detectors.This study aimed to investigate the effect of multiple Coulomb scattering on the measured resolution,particularly at low beam energies.Simulations were conducted using Allpix^(2) to study the effects of multiple Coulomb scattering under different beam energies,material budgets,and telescope layouts.The simulations also provided the minimum energy at which the effect of multiple Coulomb scattering could be ignored.Compared with the results of a five-layer detector system tested with an electron beam at DESY,the simulation results were consistent with the beam test results,confirming the reliability of the simulations.
文摘Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data.This property makes it difficult for steganalysts’powerful data extraction tools to detect the hidden data and ensures high-quality stego image generation.However,using a seed key to generate non-repeated sequential numbers takes a long time because it requires specific mathematical equations.In addition,these numbers may cluster in certain ranges.The hidden data in these clustered pixels will reduce the image quality,which steganalysis tools can detect.Therefore,this paper proposes a data structure that safeguards the steganographic model data and maintains the quality of the stego image.This paper employs the AdelsonVelsky and Landis(AVL)tree data structure algorithm to implement the randomization pixel selection technique for data concealment.The AVL tree algorithm provides several advantages for image steganography.Firstly,it ensures balanced tree structures,which leads to efficient data retrieval and insertion operations.Secondly,the self-balancing nature of AVL trees minimizes clustering by maintaining an even distribution of pixels,thereby preserving the stego image quality.The data structure employs the pixel indicator technique for Red,Green,and Blue(RGB)channel extraction.The green channel serves as the foundation for building a balanced binary tree.First,the sender identifies the colored cover image and secret data.The sender will use the two least significant bits(2-LSB)of RGB channels to conceal the data’s size and associated information.The next step is to create a balanced binary tree based on the green channel.Utilizing the channel pixel indicator on the LSB of the green channel,we can conceal bits in the 2-LSB of the red or blue channel.The first four levels of the data structure tree will mask the data size,while subsequent levels will conceal the remaining digits of secret data.After embedding the bits in the binary tree level by level,the model restores the AVL tree to create the stego image.Ultimately,the receiver receives this stego image through the public channel,enabling secret data recovery without stego or crypto keys.This method ensures that the stego image appears unsuspicious to potential attackers.Without an extraction algorithm,a third party cannot extract the original secret information from an intercepted stego image.Experimental results showed high levels of imperceptibility and security.
基金supported by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(Grant No.SKLACSS-202208)the Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQLZX0139)the National Natural Science Foundation of China(Grant No.61772295).
文摘With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and protect intellectual property rights,this study proposes an innovative color image encryption algorithm.Initially,the Mersenne Twister algorithm is utilized to generate high-quality pseudo-random numbers,establishing a robust basis for subsequent operations.Subsequently,two distinct chaotic systems,the autonomous non-Hamiltonian chaotic system and the tentlogistic-cosine chaotic mapping,are employed to produce chaotic random sequences.These chaotic sequences are used to control the encoding and decoding process of the DNA,effectively scrambling the image pixels.Furthermore,the complexity of the encryption process is enhanced through improved Joseph block scrambling.Thorough experimental verification,research,and analysis,the average value of the information entropy test data reaches as high as 7.999.Additionally,the average value of the number of pixels change rate(NPCR)test data is 99.6101%,which closely approaches the ideal value of 99.6094%.This algorithm not only guarantees image quality but also substantially raises the difficulty of decryption.
文摘近日,第33届USENIX Security Symposium (USENIX Security 2024)在美国费城召开。西安电子科技大学网络与信息安全学院陈晓峰教授团队的最新研究成果“Pixel+and Pixel++:Compact and Efficient Forward-Secure Multi-Signatures for Po S Blockchain Consensus”被大会全文录用。该研究成果由西安电子科技大学、南开大学和伍伦贡大学(University of Wollongong)合作完成,第一作者为陈晓峰教授合作指导的博士后魏江宏。
文摘A three-transistor active pixel sensor and its double sampling readout circuit implemented by a switch capacitor amplifier are designed. The circuit is embedded in a 64 × 64 pixel array CMOS image sensor and success-fully taped out with a Chartered 0.35μm process. The pixel pitch is 8μm × 8μm with a fill factor of 57%, the photo-sensitivity is 0.8V/(lux · s) ,and the dynamic range is 50dB. Theoretical analysis and test results indicate that as the process is scaled down, a smaller pixel pitch reduces the sensitivity. A deep junction n-well/p-substrate photodiode with a reasonable fill factor and high sensitivity are more appropriate for submicron processes.