Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. Howev...Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.展开更多
In this article we summarize some aperiodic checkpoint placement algorithms for a software system over infinite and finite operation time horizons, and compare them in terms of computational accuracy. The underlying p...In this article we summarize some aperiodic checkpoint placement algorithms for a software system over infinite and finite operation time horizons, and compare them in terms of computational accuracy. The underlying problem is formulated as the maximization of steady-state system availability and is to determine the optimal aperiodic checkpoint sequence. We present two exact computation algorithms in both forward and backward manners and two approximate ones;constant hazard approximation and fluid approximation, toward this end. In numerical examples with Weibull system failure time distribution, it is shown that the combined algorithm with the fluid approximation can calculate effectively the exact solutions on the optimal aperiodic checkpoint sequence.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
In order for optical interconnection technologies to be incorporated into the next generation parallel computers, new optoelectronic computer aided design, integration, and packaging technologies must be investigated....In order for optical interconnection technologies to be incorporated into the next generation parallel computers, new optoelectronic computer aided design, integration, and packaging technologies must be investigated. One of the key issues in designing is the system volume, which is determined by maximum interconnection distance(MID) between PEs. A novel 2 D genetic algorithm was presented in this paper at the first time, and used to solve the placement of twin butterfly multistage networks based on transmissive physical model. The experiment result shows that this algorithm case works better than other algorithm cases.展开更多
With the development of Computerized Business Application, the amount of data is increasing exponentially. Cloud computing provides high performance computing resources and mass storage resources for massive data proc...With the development of Computerized Business Application, the amount of data is increasing exponentially. Cloud computing provides high performance computing resources and mass storage resources for massive data processing. In distributed cloud computing systems, data intensive computing can lead to data scheduling between data centers. Reasonable data placement can reduce data scheduling between the data centers effectively, and improve the data acquisition efficiency of users. In this paper, the mathematical model of data scheduling between data centers is built. By means of the global optimization ability of the genetic algorithm, generational evolution produces better approximate solution, and gets the best approximation of the data placement at last. The experimental results show that genetic algorithm can effectively work out the approximate optimal data placement, and minimize data scheduling between data centers.展开更多
The Artificial Bee Colony (ABC) is one of the numerous stochastic algorithms for optimization that has been written for solving constrained and unconstrained optimization problems. This novel optimization algorithm is...The Artificial Bee Colony (ABC) is one of the numerous stochastic algorithms for optimization that has been written for solving constrained and unconstrained optimization problems. This novel optimization algorithm is very efficient and as promising as it is;it can be favourably compared to other optimization algorithms and in some cases, it has been proven to be better than some known algorithms (like Particle Swarm Optimization (PSO)), especially when used in Well placement optimization problems that can be encountered in the Petroleum industry. In this paper, the ABC algorithm has been modified to improve its speed and convergence in finding the optimum solution to a well placement optimization problem. The effects of variations of the control parameters for both algorithms were studied, as well as the algorithms’ performances in the cases studied. The modified ABC (MABC) algorithm gave better results than the Artificial Bee Colony algorithm. It was noticed that the performance of the ABC algorithm increased with increase in the number of its optimization agents for both algorithms studied. The modified ABC algorithm overcame the challenge posed by the use of uniformly generated random numbers with very rough NPV surface. This new modified ABC algorithm proposed in this work will be a great tool in optimization for the Petroleum industry as it involves Well placements for optimum oil production.展开更多
This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using c...This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency.展开更多
We present a deterministic algorithm for large-scale VLSI module placement. Following the less flexibility first (LFF) principle,we simulate a manual packing process in which the concept of placement by stages is in...We present a deterministic algorithm for large-scale VLSI module placement. Following the less flexibility first (LFF) principle,we simulate a manual packing process in which the concept of placement by stages is introduced to reduce the overall evaluation complexity. The complexity of the proposed algorithm is (N1 + N2 ) × O( n^2 ) + N3× O(n^4lgn) ,where N1, N2 ,and N3 denote the number of modules in each stage, N1 + N2 + N3 = n, and N3〈〈 n. This complexity is much less than the original time complexity of O(n^5lgn). Experimental results indicate that this approach is quite promising.展开更多
基金supported by the Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No.61521003)The National Basic Research Program of China(973)(Grant No.2012CB315901,2013CB329104)+1 种基金The National Natural Science Foundation of China(Grant No.61372121,61309019,61309020)The National High Technology Research and Development Program of China(863)(Grant No.2015AA016102,2013AA013505)
文摘Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.
文摘In this article we summarize some aperiodic checkpoint placement algorithms for a software system over infinite and finite operation time horizons, and compare them in terms of computational accuracy. The underlying problem is formulated as the maximization of steady-state system availability and is to determine the optimal aperiodic checkpoint sequence. We present two exact computation algorithms in both forward and backward manners and two approximate ones;constant hazard approximation and fluid approximation, toward this end. In numerical examples with Weibull system failure time distribution, it is shown that the combined algorithm with the fluid approximation can calculate effectively the exact solutions on the optimal aperiodic checkpoint sequence.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
基金Defense Science and Technology Pre- re-search Foundation Project!under Con-tract98J2 .5.8.JW0 30 1
文摘In order for optical interconnection technologies to be incorporated into the next generation parallel computers, new optoelectronic computer aided design, integration, and packaging technologies must be investigated. One of the key issues in designing is the system volume, which is determined by maximum interconnection distance(MID) between PEs. A novel 2 D genetic algorithm was presented in this paper at the first time, and used to solve the placement of twin butterfly multistage networks based on transmissive physical model. The experiment result shows that this algorithm case works better than other algorithm cases.
文摘With the development of Computerized Business Application, the amount of data is increasing exponentially. Cloud computing provides high performance computing resources and mass storage resources for massive data processing. In distributed cloud computing systems, data intensive computing can lead to data scheduling between data centers. Reasonable data placement can reduce data scheduling between the data centers effectively, and improve the data acquisition efficiency of users. In this paper, the mathematical model of data scheduling between data centers is built. By means of the global optimization ability of the genetic algorithm, generational evolution produces better approximate solution, and gets the best approximation of the data placement at last. The experimental results show that genetic algorithm can effectively work out the approximate optimal data placement, and minimize data scheduling between data centers.
文摘The Artificial Bee Colony (ABC) is one of the numerous stochastic algorithms for optimization that has been written for solving constrained and unconstrained optimization problems. This novel optimization algorithm is very efficient and as promising as it is;it can be favourably compared to other optimization algorithms and in some cases, it has been proven to be better than some known algorithms (like Particle Swarm Optimization (PSO)), especially when used in Well placement optimization problems that can be encountered in the Petroleum industry. In this paper, the ABC algorithm has been modified to improve its speed and convergence in finding the optimum solution to a well placement optimization problem. The effects of variations of the control parameters for both algorithms were studied, as well as the algorithms’ performances in the cases studied. The modified ABC (MABC) algorithm gave better results than the Artificial Bee Colony algorithm. It was noticed that the performance of the ABC algorithm increased with increase in the number of its optimization agents for both algorithms studied. The modified ABC algorithm overcame the challenge posed by the use of uniformly generated random numbers with very rough NPV surface. This new modified ABC algorithm proposed in this work will be a great tool in optimization for the Petroleum industry as it involves Well placements for optimum oil production.
文摘This study considers several computational techniques for solving one formulation of the wells placement problem (WPP). Usually the wells placement problem is tackled through the combined efforts of many teams using conventional approaches, which include gathering seismic data, conducting real-time surveys, and performing production interpretations in order to define the sweet spots. This work considers one formulation of the wells placement problem in heterogeneous reservoirs with constraints on inter-well spacing. The performance of three different types of algorithms for optimizing the well placement problem is compared. These three techniques are: genetic algorithm, simulated annealing, and mixed integer programming (IP). Example case studies show that integer programming is the best approach in terms of reaching the global optimum. However, in many cases, the other approaches can often reach a close to optimal solution with much more computational efficiency.
文摘We present a deterministic algorithm for large-scale VLSI module placement. Following the less flexibility first (LFF) principle,we simulate a manual packing process in which the concept of placement by stages is introduced to reduce the overall evaluation complexity. The complexity of the proposed algorithm is (N1 + N2 ) × O( n^2 ) + N3× O(n^4lgn) ,where N1, N2 ,and N3 denote the number of modules in each stage, N1 + N2 + N3 = n, and N3〈〈 n. This complexity is much less than the original time complexity of O(n^5lgn). Experimental results indicate that this approach is quite promising.