The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source poll...The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source pollution from cells is estimated using the export coefficients of different land use types. The non-point source pollution from a land cell should all go into the closest fiver reach, so it is distributed according to the terrain of the plain river network area and the positions of land cells and river network reaches. A relationship between a single land cell and its pollution-receiving reach can be determined using this system. In view of the above, a spatial distribution model of the rainfall runoff and non-point source pollution in reaches of a plain river network area was established. This model can provide technological support for further research on the dynamic effects of non-point source pollution on water quality.展开更多
Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblag...Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblages and age determinations in some other boreholes, shows that during the Late Wurm Glacial, sea level of the study area rose and fell frequently, but had principally been in the environments of estuary-bay. This mainly resulted from the tectonic subouction. In this period 3 low sea levels occurred. at 18, 16 and 12 kaBP respectively. During Holocene, sea weter intruded massively and the sea level over the transgnaion maximum had been 5-10 m higher than that of the present.展开更多
The Hutuo River alluvial-proluvial fan is located in North China Plain, and groundwater is the main source of water supply for agriculture and domestic water. Shijiazhuang depression funnels due to the long-term exces...The Hutuo River alluvial-proluvial fan is located in North China Plain, and groundwater is the main source of water supply for agriculture and domestic water. Shijiazhuang depression funnels due to the long-term excessive exploitation are the bottleneck of the regional economic development. Analyzing the chemical characteristics of groundwater under the condition of strong human activities, can provide a scientific basis for further study of strong groundwater mining area environmental change. 143 groups of shallow groundwater samples are collected during the period of 2007-2008. In this paper, the hydrochemical characteristics of groundwater in the Hutuo River Plain area are analyzed systematically, using hydrogeochemical theory, combined with statistical methods and hydrochemical methods. Results are shown as follows: HCO_3^- and Ca^(2+) are major anion and cation. The variation coefficients of K^+, Ca^(2+), Mg^(2+) and HCO_3^- between 0.25 and 0.52, which means small and stable relatively. The variation coefficient of are Na^+, NO_3^-, Cl-, SO2-4 were large(0.89-1.01). They are sensitive and vulnerable to environmental change affect. Due to the impact of human activities, from the top to the edge of the alluvial-proluvial fan, the hydrochemical types of groundwater change from single to multiple, followed by HCO_3^-Ca·Mg, HCO_3·SO_4-Ca·Mg, HCO_3·SO_4·Cl-Ca·Mg, HCO_3·Cl-Ca·Mg and other types.展开更多
Based on the special hydrogeological conditions of the Dahei River Plain in the Inner Mongolia area, assessment of shallow groundwater vulnerability is conducted based on DRASTIC model. Each evaluation indicator weigh...Based on the special hydrogeological conditions of the Dahei River Plain in the Inner Mongolia area, assessment of shallow groundwater vulnerability is conducted based on DRASTIC model. Each evaluation indicator weight is determined by using analytic hierarchy process(AHP). The most important indicators are lithology in soil media and vadose zone. Assessment model of shallow groundwater vulnerability of the Dahei River plain is constructed. Distribution map of vulnerability index in this area is made with the spatial analysis function of ARCGIS. The results show that the particularly sensitive area is the piedmont of the Daqing Mountain, where the upstream place of the groundwater and the south-central place of the plain has the lowest vulnerability. The assessment results are more in accordance with the actual vulnerability conditions of this area by using analytic hierarchy process, and is helpful for groundwater protection.展开更多
Teesta river flood plain is one of the most significant landscapes in Bangladesh. The main theme of this research was to assess the present biogeomorphological state (biomass, herbaceous vegetation species, density of...Teesta river flood plain is one of the most significant landscapes in Bangladesh. The main theme of this research was to assess the present biogeomorphological state (biomass, herbaceous vegetation species, density of all vegetation species, flood plain extension mapping) of Teesta river flood plain under Gangachara upazila. The research work was conducted based on the objectives to prepare a map of Teesta river flood plain extension area, to estimate herbaceous vegetation (biomass, species types), and to find out the vegetation density to assess the present biogeomorphological state of study area. To present the flood plain area of Teesta river in the Gangachara upazila, base map has been used;herbaceous vegetation samples have been collected through quadrat method to estimate biomass (both in dry and before dry condition) using digital weight machine;vegetation density has been shown through NDVI of satellite image (Landsat-8) using red and NIR band in ArcGIS 10.1 software. From the results of this research, river flood plain area is found 68.5 sq. km;total 31 types of herbaceous species have been identified where Pouzolzia indica is the most dominated species covering 11.59% of the total area;maximum DNs value of NDVI is found +0.475242 which represents the highest vegetation density covering an area of 78 sq. km of the total area. The research may assist for the further study of river flood plain biogeomorphology throughout the country as well as in the world.展开更多
Fluvial geomorphology is affected by physical conditions which allow its adaptation due to high dynamics and environmental influences. Fluvial morphological changes are manifested as a result of tendency of the river ...Fluvial geomorphology is affected by physical conditions which allow its adaptation due to high dynamics and environmental influences. Fluvial morphological changes are manifested as a result of tendency of the river system to maintain its physical balance. Our study area is the upper and middle flow part of Vouraikos river and surrounding area, near the NW border of Chelmos mountain in Northern Peloponnese, near the town of Kalavrita, at an altitude of 800 m. The area is part of the Skepasto basin, constituting of a graben with a general E-W direction that was developed NW of Kalavrita. The area comprises of Mesozoic, Upper Triassic-Jurassic limestone and dolomite of the Tripolitsa unit External Hellenides and Plio-Pleistocene fluvio-lacustrine sequences, while its tectonic structure is characterized mainly by normal faults. The geomorphological landscape is characterized by alluvial deposits and important geomorphological features including fluvial terraces, alluvial fans, fluvial scarps and their main rill washes. This area has been a place of major human activity as shown by the findings of many uncovered artifacts and a settlement. Through a paleographic reconstruction, detailed field investigations, in combination with the compilation of geomorphological maps using GIS software and archaeological evidence found in the area, we attempted to reconstruct the fluvial evolution of Vouraikos river and identify the major geomorphological factors that led to, and influenced it. Finally, the link between cultural activities and sedimentary processes is also studied. The recorded environmental variations had a great impact on the geomorphological shaping and instability of Kalavrita plain and Vouraikos river and are being reflected on the buried settlement. Sediment fluxes were high enough to form strath terraces, while local tectonics aided in the strath and fill terrace creation. Smaller and younger strath terraces, formed during increased sediment supply periods, when the valley was at a higher level.展开更多
The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow a...The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network.展开更多
22 typical test points and 8 profiles were selected and arranged in the plain of Yili River Valley based on lithological distribution and sedimentary characteristics to study spatial variability of soil infiltration c...22 typical test points and 8 profiles were selected and arranged in the plain of Yili River Valley based on lithological distribution and sedimentary characteristics to study spatial variability of soil infiltration coefficient. The results show that the infiltration coefficient of different geo-morphic units is as follows: the desert area > the pre-mountain alluvial-proluvial plain > river terrace,which is mainly related to the lithology of aeration zone,buried depth of groundwater and underlying surface. For the infiltration coefficient of different aeration zone mediums,the results are consistent with the changing law. The partition of plain of the Yili River Valley is based on geo-morphic units,infiltration coefficient and the lithology of aeration zone. The maximum infiltration coefficient is concentrated in the desert area,and there is zonal distribution of infiltration coefficient in plane.展开更多
According to buried depth, the Yellow Rver's Paleochannels can be divided into ground Paleochannels (buried depth 0-8m) and shallowburied Paleochannels theried depth 8-50m). Each of them can be roughly divided int...According to buried depth, the Yellow Rver's Paleochannels can be divided into ground Paleochannels (buried depth 0-8m) and shallowburied Paleochannels theried depth 8-50m). Each of them can be roughly divided into three major Paleochannel belts, stretching Parallel with each other from SW to NE. Sedimentary layers of the paleochannels were mainly made up by sand levee of meanders or natural leavee deposits, and the flooding sedments were found bebeen the layers. The paleochannels in North Shadong Plain were formed in three stags; stage I (buried depth 50-15m) in later period of late Pleistocene-early period of Holocene, stag II (20-8m) in earlymiddle period of HOlocene; and stag III (8-0m) in midddle-late period of Holocene.展开更多
In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang ...In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much.展开更多
The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed rive...The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene.展开更多
To understand the natural environments of drylands, deserts, arid and semi-arid regions of the earth is to understand the processes and forms of their rivers. One of the river studies and fluvial processes are morphom...To understand the natural environments of drylands, deserts, arid and semi-arid regions of the earth is to understand the processes and forms of their rivers. One of the river studies and fluvial processes are morphometry analyses. The channel forms in an alluvial plain reflecting the movement of water and the particle size of the load flowing down the channel. The dynamics of channel change has led to conflict with human resource development. Three basic channel patterns are detected in the region. They are braided, meandering and straight. In this research for assessment of meandering Maroon River, we used DEM (Digital Elevation System), Topography maps, Arc GIS software, Google earth, field work and library studies and mathematic formula. The two general indices for analyzing meandering patterns are 1) sinuosity coefficient 2) central angle. In this paper, the authors were used these factors and improved them. One of the results is creation of direction index and the second result is the Maroon River which has a type of sinuosity in any reach.展开更多
Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up base...Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.展开更多
Downstream changes in channel morphology and flow over the ephemeral Dwarkeswar River in the western part of the Bengal Basin, eastren India were investigated. The river stretches from the Proterozoic Granite Gneiss C...Downstream changes in channel morphology and flow over the ephemeral Dwarkeswar River in the western part of the Bengal Basin, eastren India were investigated. The river stretches from the Proterozoic Granite Gneiss Complex to the recent Holocene alluvium, forming three distinctive geomorphological regions across the river basin: the pediplane and upper and lower alluvial areas. Sixty cross-sections from throughout the main trunk stream were surveyed and the bankfull width, depth, cross-sectional area, and maximum depth were measured. Sediment samples from each location were studied and the flow velocity, stream power, Manning’s roughness coefficient, and shear stress were estimated. The results show that the bankfull channel cross-section area, width, width-to-depth ratio, and channel capacity increased between the beginning and middle of the river. Thereafter, the size of the river started to decrease in the lower alluvial area. This was characterized by gentle gradients, cohesive bank materials with grass cover, and channel switching. Within the lower part of the river, the channel capacity was observed to diminish as the drainage area increased. This increased the bankfull flow frequency and accelerated large floodwater losses in the floodplain via overbank flows and floodways.展开更多
The Snake River in northwestern United States is 1735 km long, the largest tributary of the Columbia River and is the 13<sup>th</sup> longest river in the United States. The Snake River drainage basin incl...The Snake River in northwestern United States is 1735 km long, the largest tributary of the Columbia River and is the 13<sup>th</sup> longest river in the United States. The Snake River drainage basin includes parts of six U.S. states. The Snake River Plain was created by a volcanic hotspot that lies beneath Yellow-stone National Park. The previous Ice Age carved out canyons, cliffs and waterfalls along the middle and lower Snake River. The Missoula Flood was to the north and Bonneville Flood to the south altered the Snake River and surrounding landscape. The Snake River has a drainage basin of 282,000 km<sup>2</sup> in the states of Oregon, Washington, Utah, Nevada and Idaho. The Snake River drops from mountain elevations of 3000 m to its confluence with the Columbia River. The river is one of the most biologically diverse freshwater systems in the United States with trails designed to promote recreational tourism, increase use of the Snake River and create generations of people who care about the river and are willing to protect and provide environmental stewardship of the river watershed resources.展开更多
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment in China (Grant No. 2008X07101-005)
文摘The land area in a river network is divided into certain-scale square cells for the sake of precision, and, based on the physical mechanisms of rainfall-runoff processes and runoff pollution, the non-point source pollution from cells is estimated using the export coefficients of different land use types. The non-point source pollution from a land cell should all go into the closest fiver reach, so it is distributed according to the terrain of the plain river network area and the positions of land cells and river network reaches. A relationship between a single land cell and its pollution-receiving reach can be determined using this system. In view of the above, a spatial distribution model of the rainfall runoff and non-point source pollution in reaches of a plain river network area was established. This model can provide technological support for further research on the dynamic effects of non-point source pollution on water quality.
文摘Four units and twenty-four zones of diatom have been discerned in the Borehole ZK5 in the estuarine plain of the Jiulong River, Fujian Province. Comprehensive analysis of these, together with microbiological assemblages and age determinations in some other boreholes, shows that during the Late Wurm Glacial, sea level of the study area rose and fell frequently, but had principally been in the environments of estuary-bay. This mainly resulted from the tectonic subouction. In this period 3 low sea levels occurred. at 18, 16 and 12 kaBP respectively. During Holocene, sea weter intruded massively and the sea level over the transgnaion maximum had been 5-10 m higher than that of the present.
基金supported by Public Welfare Project of Ministry of Water Resources (201501008)Natural Science Foundation of Hebei Province (D2015504019)
文摘The Hutuo River alluvial-proluvial fan is located in North China Plain, and groundwater is the main source of water supply for agriculture and domestic water. Shijiazhuang depression funnels due to the long-term excessive exploitation are the bottleneck of the regional economic development. Analyzing the chemical characteristics of groundwater under the condition of strong human activities, can provide a scientific basis for further study of strong groundwater mining area environmental change. 143 groups of shallow groundwater samples are collected during the period of 2007-2008. In this paper, the hydrochemical characteristics of groundwater in the Hutuo River Plain area are analyzed systematically, using hydrogeochemical theory, combined with statistical methods and hydrochemical methods. Results are shown as follows: HCO_3^- and Ca^(2+) are major anion and cation. The variation coefficients of K^+, Ca^(2+), Mg^(2+) and HCO_3^- between 0.25 and 0.52, which means small and stable relatively. The variation coefficient of are Na^+, NO_3^-, Cl-, SO2-4 were large(0.89-1.01). They are sensitive and vulnerable to environmental change affect. Due to the impact of human activities, from the top to the edge of the alluvial-proluvial fan, the hydrochemical types of groundwater change from single to multiple, followed by HCO_3^-Ca·Mg, HCO_3·SO_4-Ca·Mg, HCO_3·SO_4·Cl-Ca·Mg, HCO_3·Cl-Ca·Mg and other types.
基金Basic Scientific Research Operating Expense Project of the Chinese Academy of Geological Sciences“Leaky System Numerical Modeling and Progressive Parameter Inversion Study”(YYWF201626)Geological survey project“1/50 000 Hydrogeological Survey of the Hutuo River-Fuyang River Basin Plain”(DD20160238)
文摘Based on the special hydrogeological conditions of the Dahei River Plain in the Inner Mongolia area, assessment of shallow groundwater vulnerability is conducted based on DRASTIC model. Each evaluation indicator weight is determined by using analytic hierarchy process(AHP). The most important indicators are lithology in soil media and vadose zone. Assessment model of shallow groundwater vulnerability of the Dahei River plain is constructed. Distribution map of vulnerability index in this area is made with the spatial analysis function of ARCGIS. The results show that the particularly sensitive area is the piedmont of the Daqing Mountain, where the upstream place of the groundwater and the south-central place of the plain has the lowest vulnerability. The assessment results are more in accordance with the actual vulnerability conditions of this area by using analytic hierarchy process, and is helpful for groundwater protection.
文摘Teesta river flood plain is one of the most significant landscapes in Bangladesh. The main theme of this research was to assess the present biogeomorphological state (biomass, herbaceous vegetation species, density of all vegetation species, flood plain extension mapping) of Teesta river flood plain under Gangachara upazila. The research work was conducted based on the objectives to prepare a map of Teesta river flood plain extension area, to estimate herbaceous vegetation (biomass, species types), and to find out the vegetation density to assess the present biogeomorphological state of study area. To present the flood plain area of Teesta river in the Gangachara upazila, base map has been used;herbaceous vegetation samples have been collected through quadrat method to estimate biomass (both in dry and before dry condition) using digital weight machine;vegetation density has been shown through NDVI of satellite image (Landsat-8) using red and NIR band in ArcGIS 10.1 software. From the results of this research, river flood plain area is found 68.5 sq. km;total 31 types of herbaceous species have been identified where Pouzolzia indica is the most dominated species covering 11.59% of the total area;maximum DNs value of NDVI is found +0.475242 which represents the highest vegetation density covering an area of 78 sq. km of the total area. The research may assist for the further study of river flood plain biogeomorphology throughout the country as well as in the world.
文摘Fluvial geomorphology is affected by physical conditions which allow its adaptation due to high dynamics and environmental influences. Fluvial morphological changes are manifested as a result of tendency of the river system to maintain its physical balance. Our study area is the upper and middle flow part of Vouraikos river and surrounding area, near the NW border of Chelmos mountain in Northern Peloponnese, near the town of Kalavrita, at an altitude of 800 m. The area is part of the Skepasto basin, constituting of a graben with a general E-W direction that was developed NW of Kalavrita. The area comprises of Mesozoic, Upper Triassic-Jurassic limestone and dolomite of the Tripolitsa unit External Hellenides and Plio-Pleistocene fluvio-lacustrine sequences, while its tectonic structure is characterized mainly by normal faults. The geomorphological landscape is characterized by alluvial deposits and important geomorphological features including fluvial terraces, alluvial fans, fluvial scarps and their main rill washes. This area has been a place of major human activity as shown by the findings of many uncovered artifacts and a settlement. Through a paleographic reconstruction, detailed field investigations, in combination with the compilation of geomorphological maps using GIS software and archaeological evidence found in the area, we attempted to reconstruct the fluvial evolution of Vouraikos river and identify the major geomorphological factors that led to, and influenced it. Finally, the link between cultural activities and sedimentary processes is also studied. The recorded environmental variations had a great impact on the geomorphological shaping and instability of Kalavrita plain and Vouraikos river and are being reflected on the buried settlement. Sediment fluxes were high enough to form strath terraces, while local tectonics aided in the strath and fill terrace creation. Smaller and younger strath terraces, formed during increased sediment supply periods, when the valley was at a higher level.
文摘The water distribution network is an important part of the plain water environment improvement system. To make efficient use of the regional water diversion source, scientifically distribute the water diversion flow and improve the water environment carrying capacity of Haishu Plain, the river network hydrodynamic model is used in this paper to simulate the water intake location, reasonable water quantity and influence range of water transfer in Haishu Plain. The simulation results have high accuracy, which can provide a scientific basis for the scale, water transfer mechanism and project layout of water transfer construction in Haishu Plain and show a strong reference value for the study of water diversion and distribution scheme of coastal plain river network.
基金Supported by National Natural Science Foundation of China(41202178,41372260,41472220)Open Foundation for Key Laboratories of Ministry of Education of China(2014G1502024)+1 种基金Project of China Geological Survey(1212011014024)Innovation Capability Support Program of Shaanxi(2019TD-040)。
文摘22 typical test points and 8 profiles were selected and arranged in the plain of Yili River Valley based on lithological distribution and sedimentary characteristics to study spatial variability of soil infiltration coefficient. The results show that the infiltration coefficient of different geo-morphic units is as follows: the desert area > the pre-mountain alluvial-proluvial plain > river terrace,which is mainly related to the lithology of aeration zone,buried depth of groundwater and underlying surface. For the infiltration coefficient of different aeration zone mediums,the results are consistent with the changing law. The partition of plain of the Yili River Valley is based on geo-morphic units,infiltration coefficient and the lithology of aeration zone. The maximum infiltration coefficient is concentrated in the desert area,and there is zonal distribution of infiltration coefficient in plane.
文摘According to buried depth, the Yellow Rver's Paleochannels can be divided into ground Paleochannels (buried depth 0-8m) and shallowburied Paleochannels theried depth 8-50m). Each of them can be roughly divided into three major Paleochannel belts, stretching Parallel with each other from SW to NE. Sedimentary layers of the paleochannels were mainly made up by sand levee of meanders or natural leavee deposits, and the flooding sedments were found bebeen the layers. The paleochannels in North Shadong Plain were formed in three stags; stage I (buried depth 50-15m) in later period of late Pleistocene-early period of Holocene, stag II (20-8m) in earlymiddle period of HOlocene; and stag III (8-0m) in midddle-late period of Holocene.
基金Under the auspices of National Natural Science Foundation of China (No. 40830535)Knowledge Innovation Pro-gram of Chinese Academy of Sciences (No.KSCX2-YW-N-46-06)
文摘In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much.
基金supported by the National Natural Science Foundation of China(41977258)the China Geological Survey(DD20190310,DD20221761)the National Key R&D Program of China(2018YFC1504704).
文摘The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene.
文摘To understand the natural environments of drylands, deserts, arid and semi-arid regions of the earth is to understand the processes and forms of their rivers. One of the river studies and fluvial processes are morphometry analyses. The channel forms in an alluvial plain reflecting the movement of water and the particle size of the load flowing down the channel. The dynamics of channel change has led to conflict with human resource development. Three basic channel patterns are detected in the region. They are braided, meandering and straight. In this research for assessment of meandering Maroon River, we used DEM (Digital Elevation System), Topography maps, Arc GIS software, Google earth, field work and library studies and mathematic formula. The two general indices for analyzing meandering patterns are 1) sinuosity coefficient 2) central angle. In this paper, the authors were used these factors and improved them. One of the results is creation of direction index and the second result is the Maroon River which has a type of sinuosity in any reach.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51190091)the National Natural Science Foundation of China(Grant No.51009045)the Open Research Fund Program of the State Key Laboratory of Water Resources and Hydropower Engineering Science of Wuhan University(Grant No.2012B094)
文摘Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.
基金the auspices of the University Grants Commission(No.21595/(NET-DEC.2013),F.15-6(DEC.2013))。
文摘Downstream changes in channel morphology and flow over the ephemeral Dwarkeswar River in the western part of the Bengal Basin, eastren India were investigated. The river stretches from the Proterozoic Granite Gneiss Complex to the recent Holocene alluvium, forming three distinctive geomorphological regions across the river basin: the pediplane and upper and lower alluvial areas. Sixty cross-sections from throughout the main trunk stream were surveyed and the bankfull width, depth, cross-sectional area, and maximum depth were measured. Sediment samples from each location were studied and the flow velocity, stream power, Manning’s roughness coefficient, and shear stress were estimated. The results show that the bankfull channel cross-section area, width, width-to-depth ratio, and channel capacity increased between the beginning and middle of the river. Thereafter, the size of the river started to decrease in the lower alluvial area. This was characterized by gentle gradients, cohesive bank materials with grass cover, and channel switching. Within the lower part of the river, the channel capacity was observed to diminish as the drainage area increased. This increased the bankfull flow frequency and accelerated large floodwater losses in the floodplain via overbank flows and floodways.
文摘The Snake River in northwestern United States is 1735 km long, the largest tributary of the Columbia River and is the 13<sup>th</sup> longest river in the United States. The Snake River drainage basin includes parts of six U.S. states. The Snake River Plain was created by a volcanic hotspot that lies beneath Yellow-stone National Park. The previous Ice Age carved out canyons, cliffs and waterfalls along the middle and lower Snake River. The Missoula Flood was to the north and Bonneville Flood to the south altered the Snake River and surrounding landscape. The Snake River has a drainage basin of 282,000 km<sup>2</sup> in the states of Oregon, Washington, Utah, Nevada and Idaho. The Snake River drops from mountain elevations of 3000 m to its confluence with the Columbia River. The river is one of the most biologically diverse freshwater systems in the United States with trails designed to promote recreational tourism, increase use of the Snake River and create generations of people who care about the river and are willing to protect and provide environmental stewardship of the river watershed resources.