期刊文献+
共找到145,400篇文章
< 1 2 250 >
每页显示 20 50 100
Evolutionary Decision-Making and Planning for Autonomous Driving Based on Safe and Rational Exploration and Exploitation 被引量:2
1
作者 Kang Yuan Yanjun Huang +4 位作者 Shuo Yang Zewei Zhou Yulei Wang Dongpu Cao Hong Chen 《Engineering》 SCIE EI CAS CSCD 2024年第2期108-120,共13页
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame... Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment. 展开更多
关键词 Autonomous driving DECISION-MAKING Motion planning Deep reinforcement learning Model predictive control
下载PDF
Motion Planning for Autonomous Driving with Real Traffic Data Validation 被引量:1
2
作者 Wenbo Chu Kai Yang +1 位作者 Shen Li Xiaolin Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期74-86,共13页
Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed bas... Accurate trajectory prediction of surrounding road users is the fundamental input for motion planning,which enables safe autonomous driving on public roads.In this paper,a safe motion planning approach is proposed based on the deep learning-based trajectory prediction method.To begin with,a trajectory prediction model is established based on the graph neural network(GNN)that is trained utilizing the INTERACTION dataset.Then,the validated trajectory prediction model is used to predict the future trajectories of surrounding road users,including pedestrians and vehicles.In addition,a GNN prediction model-enabled motion planner is developed based on the model predictive control technique.Furthermore,two driving scenarios are extracted from the INTERACTION dataset to validate and evaluate the effectiveness of the proposed motion planning approach,i.e.,merging and roundabout scenarios.The results demonstrate that the proposed method can lower the risk and improve driving safety compared with the baseline method. 展开更多
关键词 Trajectory prediction Graph neural network Motion planning INTERACTION dataset
下载PDF
基于Plant Simulation的压气机叶片型线加工产线分析与优化
3
作者 李春兴 徐健 +3 位作者 易泰勋 王琨 吴海峰 胡诚诚 《机械制造与自动化》 2024年第1期40-44,共5页
运用专业仿真软件Plant Simulation,根据压气机叶片型线机械加工工艺特点和物料运行流程建立生产线仿真模型,从产能、设备利用率及产线瓶颈等多方面进行仿真分析与优化。结果表明:Plant Simulation仿真平台的仿真可以找出规划设计方案... 运用专业仿真软件Plant Simulation,根据压气机叶片型线机械加工工艺特点和物料运行流程建立生产线仿真模型,从产能、设备利用率及产线瓶颈等多方面进行仿真分析与优化。结果表明:Plant Simulation仿真平台的仿真可以找出规划设计方案中存在的问题并验证方案的合理性。该仿真结果为型线机械加工产线的优化设计提供了可靠依据,达到了节约投资成本和缩短设计周期的目的。 展开更多
关键词 plant Simulation 规划 叶片 生产线
下载PDF
C-PLAN指数作为免疫检查点抑制剂治疗晚期食管癌预后指标的临床研究
4
作者 胡茹 郭怀娟 +2 位作者 王颖 严雪冰 蒋倩 《实用临床医药杂志》 CAS 2024年第1期1-6,12,共7页
目的评估C反应蛋白(CRP)、体力状况评分(PS)、乳酸脱氢酶(LDH)、白蛋白(ALB)及衍生中性粒细胞与淋巴细胞比值(dNLR)综合(C-PLAN)指数在接受免疫检查点抑制剂(ICI)治疗的晚期食管癌患者中的预后价值。方法收集扬州大学附属医院接受ICI治... 目的评估C反应蛋白(CRP)、体力状况评分(PS)、乳酸脱氢酶(LDH)、白蛋白(ALB)及衍生中性粒细胞与淋巴细胞比值(dNLR)综合(C-PLAN)指数在接受免疫检查点抑制剂(ICI)治疗的晚期食管癌患者中的预后价值。方法收集扬州大学附属医院接受ICI治疗的147例晚期食管癌患者首次免疫治疗前的血液学指标。对CRP、PS、LDH、ALB及dNLR进行评分并相加得到C-PLAN指数。采用卡方检验分析C-PLAN指数与临床病理特征的相关性;采用Kaplan-Meier生存曲线分析C-PLAN指数对患者总生存期(OS)与无进展生存期(PFS)的影响;采用单因素和多因素Cox风险比例回归模型分析C-PLAN指数是否为影响预后的独立因素。结果147例晚期食管癌患者根据C-PLAN指数分为低风险组(<2分,n=46)和高风险组(≥2分,n=101)。C-PLAN指数与年龄、性别、PS评分、吸烟、临床分期、体质量指数、病理类型、治疗策略和是否手术均无相关性(P>0.05)。低风险组PFS和OS优于高风险组,差异有统计学意义(P<0.001)。在单因素Cox回归分析中,C-PLAN指数是PFS(P<0.001)和OS(P=0.002)的影响因素。在多因素Cox分析中,C-PLAN指数是影响PFS(P=0.001)和OS(P=0.006)的独立预后因素。结论C-PLAN指数可以作为预测接受ICI治疗的晚期食管癌患者预后的可靠临床指标。 展开更多
关键词 食管癌 免疫治疗 预后 生物标志物 C-plan指数
下载PDF
Optimal search path planning of UUV in battlefeld ambush scene
5
作者 Wei Feng Yan Ma +3 位作者 Heng Li Haixiao Liu Xiangyao Meng Mo Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期541-552,共12页
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ... Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat. 展开更多
关键词 Battlefield ambush Optimal search path planning UUV path planning Probability of cooperative search
下载PDF
Efficient Route Planning for Real-Time Demand-Responsive Transit
6
作者 Hongle Li SeongKi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第4期473-492,共20页
Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d... Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility. 展开更多
关键词 Autonomous bus route planning real-time dynamic route planning path finding DRT bus route optimization sustainable public transport
下载PDF
Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC
7
作者 Hao Zheng Yinong Li +1 位作者 Ling Zheng Ehsan Hashemi 《Engineering》 SCIE EI CAS CSCD 2024年第2期146-159,共14页
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ... Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties. 展开更多
关键词 Automated vehicles Automated driving Motion planning Motion control Tube MPC ZONOTOPE
下载PDF
Heuristic Expanding Disconnected Graph:A Rapid Path Planning Method for Mobile Robots
8
作者 Yong Tao Lian Duan +3 位作者 He Gao Yufan Zhang Yian Song Tianmiao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期68-82,共15页
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th... Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality. 展开更多
关键词 Global path planning Mobile robot Expanding disconnected graph Edge node OFFSET
下载PDF
A Planning Method for Operational Test of UAV Swarm Based on Mission Reliability
9
作者 Jingyu Wang Ping Jiang Jianjun Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1889-1918,共30页
The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the... The unmanned aerial vehicle(UAV)swarm plays an increasingly important role in the modern battlefield,and the UAV swarm operational test is a vital means to validate the combat effectiveness of the UAV swarm.Due to the high cost and long duration of operational tests,it is essential to plan the test in advance.To solve the problem of planning UAV swarm operational test,this study considers the multi-stage feature of a UAV swarm mission,composed of launch,flight and combat stages,and proposes a method to find test plans that can maximize mission reliability.Therefore,a multi-stage mission reliability model for a UAV swarm is proposed to ensure successful implementation of the mission.A multi-objective integer optimization method that considers both mission reliability and cost is then formulated to obtain the optimal test plans.This study first constructs a mission reliability model for the UAV swarm in the combat stage.Then,the launch stage and flight stage are integrated to develop a complete PMS(Phased Mission Systems)reliability model.Finally,the Binary Decision Diagrams(BDD)and Multi Objective Quantum Particle Swarm Optimization(MOQPSO)methods are proposed to solve the model.The optimal plans considering both reliability and cost are obtained.The proposed model supports the planning of UAV swarm operational tests and represents a meaningful exploration of UAV swarm test planning. 展开更多
关键词 UAV swarm PMS MOQPSO BDD mission reliability operational test planning
下载PDF
Influence of a diet meal plan on pepsinogen I and II,gastrin-17,and nutritional status in gastric ulcer patients
10
作者 Wei-Wei Zhang Xiao-Fei Wang +1 位作者 Hai-Yan Yu Ling-Fang Wang 《World Journal of Clinical Cases》 SCIE 2024年第21期4574-4581,共8页
BACKGROUND Gastric ulcers(GUs)have a high risk of clinical morbidity and recurrence,and further exploration is needed for the prevention,diagnosis,and treatment of the disease.AIM To investigated the effects of a diet... BACKGROUND Gastric ulcers(GUs)have a high risk of clinical morbidity and recurrence,and further exploration is needed for the prevention,diagnosis,and treatment of the disease.AIM To investigated the effects of a diet plan on pepsinogen(PG)I,PG II,gastrin-17(G-17)levels and nutritional status in patients with GUs.METHODS A total of 100 patients with GUs treated between May 2022 and May 2023 were enrolled,with 47 patients in the control group receiving routine nursing and 53 patients in the experimental group receiving dietary nursing intervention based on a diet plan.The study compared the two groups in terms of nursing efficacy,adverse events(vomiting,acid reflux,and celialgia),time to symptom improvement(burning sensation,acid reflux,and celialgia),gastric function(PG I,PG II,and G-17 levels),and nutritional status[prealbumin(PA)and albumin(ALB)levels].RESULTS The experimental group showed a markedly higher total effective rate of nursing,a significantly lower incidence of adverse events,and a shorter time to symptom improvement than the control group.Additionally,the experimental group’s post-intervention PG I,PG II,and G-17 levels were significantly lower than preintervention or control group levels,whereas PA and ALB levels were significantly higher.CONCLUSION The diet plan significantly reduced PG I,PG II,and G-17 levels in patients with GUs and significantly improved their nutritional status. 展开更多
关键词 Diet plan Dietary care Gastric ulcers plan on pepsinogen I plan on pepsinogen II GASTRIN-17
下载PDF
Ground threat prediction-based path planning of unmanned autonomous helicopter using hybrid enhanced artificial bee colony algorithm
11
作者 Zengliang Han Mou Chen +1 位作者 Haojie Zhu Qingxian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期1-22,共22页
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro... Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method. 展开更多
关键词 UAH Path planning Ground threat prediction Hybrid enhanced Collaborative thinking
下载PDF
Stochastic programming based coordinated expansion planning of generation,transmission,demand side resources,and energy storage considering the DC transmission system
12
作者 Liang Lu Mingkui Wei +4 位作者 Yuxuan Tao Qing Wang Yuxiao Yang Chuan He Haonan Zhang 《Global Energy Interconnection》 EI CSCD 2024年第1期25-37,共13页
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co... With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations. 展开更多
关键词 Hydro-wind-solar complementary Expansion planning Demand response Energy storage system Source-network-demand-storage coordination
下载PDF
A Reverse Path Planning Approach for Enhanced Performance of Multi-Degree-of-Freedom Industrial Manipulators
13
作者 Zhiwei Lin Hui Wang +3 位作者 Tianding Chen Yingtao Jiang Jianmei Jiang Yingpin Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1357-1379,共23页
In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.... In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators. 展开更多
关键词 Reverse path planning Dyna-Q bidirectional search posture angle joint motion
下载PDF
Selection of media tools for community planning:A study from the perspective of communicative planning
14
作者 Xiaotong Zhang Linjun Yu Yang Li 《Chinese Journal of Population,Resources and Environment》 2024年第3期305-311,共7页
In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media ... In community planning,due to the lack of evidence regarding the selection of media tools,this study examines how a common but differentiated ideal speech situation can be created as well as how more appropriate media tools can be defined and selected in the community planning process.First,this study describes the concept and theoretical basis of media used in community planning from the perspectives of the multiple effects of media evolution on communicative planning.Second,the classification criteria and typical characteristics of media tools used to support community planning are clarified from three dimensions:acceptability,cost effectiveness,and applicability.Third,strategies for applying media tools in the four phases of communicative planning-namely,state analysis,problem identification,contradictory solution and optimization-are described.Finally,trends in the development of media tools for community planning are explored in terms of multistakeholder engagement,supporting scientific decision-making and multiple-type media integration.The results provide a reference for developing more inclusive,effective,and appropriate media tools for enhancing decision-making capacity and modernizing governance in community planning and policy-making processes. 展开更多
关键词 Community planning Media tools Communicative planning
下载PDF
General Optimal Trajectory Planning:Enabling Autonomous Vehicles with the Principle of Least Action
15
作者 Heye Huang Yicong Liu +4 位作者 Jinxin Liu Qisong Yang Jianqiang Wang David Abbink Arkady Zgonnikov 《Engineering》 SCIE EI CAS CSCD 2024年第2期63-76,共14页
This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we emplo... This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation. 展开更多
关键词 Autonomous vehicle Trajectory planning Multi-performance objectives Principle of least action
下载PDF
Research on Anthropomorphic Obstacle Avoidance Trajectory Planning for Adaptive Driving Scenarios Based on Inverse Reinforcement Learning Theory
16
作者 Jian Wu Yang Yan +1 位作者 Yulong Liu Yahui Liu 《Engineering》 SCIE EI CAS CSCD 2024年第2期133-145,共13页
The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto... The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios. 展开更多
关键词 Obstacle avoidance trajectory planning Inverse reinforcement theory Anthropomorphic Adaptive driving scenarios
下载PDF
A Path Planning Algorithm Based on Improved RRT Sampling Region
17
作者 Xiangkui Jiang Zihao Wang Chao Dong 《Computers, Materials & Continua》 SCIE EI 2024年第9期4303-4323,共21页
For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT ... For the problem of slow search and tortuous paths in the Rapidly Exploring Random Tree(RRT)algorithm,a feedback-biased sampling RRT,called FS-RRT,is proposedbasedon RRT.Firstly,toimprove the samplingefficiency of RRT to shorten the search time,the search area of the randomtree is restricted to improve the sampling efficiency.Secondly,to obtain better information about obstacles to shorten the path length,a feedback-biased sampling strategy is used instead of the traditional random sampling,the collision of the expanding node with an obstacle generates feedback information so that the next expanding node avoids expanding within a specific angle range.Thirdly,this paper proposes using the inverse optimization strategy to remove redundancy points from the initial path,making the path shorter and more accurate.Finally,to satisfy the smooth operation of the robot in practice,auxiliary points are used to optimize the cubic Bezier curve to avoid path-crossing obstacles when using the Bezier curve optimization.The experimental results demonstrate that,compared to the traditional RRT algorithm,the proposed FS-RRT algorithm performs favorably against mainstream algorithms regarding running time,number of search iterations,and path length.Moreover,the improved algorithm also performs well in a narrow obstacle environment,and its effectiveness is further confirmed by experimental verification. 展开更多
关键词 RRT inversive optimization path planning feedback bias sampling mobile robots
下载PDF
A digital twins enabled underwater intelligent internet vehicle path planning system via reinforcement learning and edge computing
18
作者 Jiachen Yang Meng Xi +2 位作者 Jiabao Wen Yang Li Houbing Herbert Song 《Digital Communications and Networks》 SCIE CSCD 2024年第2期282-291,共10页
The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to th... The Autonomous Underwater Glider(AUG)is a kind of prevailing underwater intelligent internet vehicle and occupies a dominant position in industrial applications,in which path planning is an essential problem.Due to the complexity and variability of the ocean,accurate environment modeling and flexible path planning algorithms are pivotal challenges.The traditional models mainly utilize mathematical functions,which are not complete and reliable.Most existing path planning algorithms depend on the environment and lack flexibility.To overcome these challenges,we propose a path planning system for underwater intelligent internet vehicles.It applies digital twins and sensor data to map the real ocean environment to a virtual digital space,which provides a comprehensive and reliable environment for path simulation.We design a value-based reinforcement learning path planning algorithm and explore the optimal network structure parameters.The path simulation is controlled by a closed-loop model integrated into the terminal vehicle through edge computing.The integration of state input enriches the learning of neural networks and helps to improve generalization and flexibility.The task-related reward function promotes the rapid convergence of the training.The experimental results prove that our reinforcement learning based path planning algorithm has great flexibility and can effectively adapt to a variety of different ocean conditions. 展开更多
关键词 Digital twins Reinforcement learning Edge computing Underwater intelligent internet vehicle Path planning
下载PDF
Multi-UAVs Collaborative Path Planning in the Cramped Environment
19
作者 Siyuan Feng Linzhi Zeng +2 位作者 Jining Liu Yi Yang Wenjie Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期529-538,共10页
Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. Howe... Due to its flexibility and complementarity, the multiUAVs system is well adapted to complex and cramped workspaces, with great application potential in the search and rescue(SAR) and indoor goods delivery fields. However, safe and effective path planning of multiple unmanned aerial vehicles(UAVs)in the cramped environment is always challenging: conflicts with each other are frequent because of high-density flight paths, collision probability increases because of space constraints, and the search space increases significantly, including time scale, 3D scale and model scale. Thus, this paper proposes a hierarchical collaborative planning framework with a conflict avoidance module at the high level and a path generation module at the low level. The enhanced conflict-base search(ECBS) in our framework is improved to handle the conflicts in the global path planning and avoid the occurrence of local deadlock. And both the collision and kinematic models of UAVs are considered to improve path smoothness and flight safety. Moreover, we specifically designed and published the cramped environment test set containing various unique obstacles to evaluating our framework performance thoroughly. Experiments are carried out relying on Rviz, with multiple flight missions: random, opposite, and staggered, which showed that the proposed method can generate smooth cooperative paths without conflict for at least 60 UAVs in a few minutes.The benchmark and source code are released in https://github.com/inin-xingtian/multi-UAVs-path-planner. 展开更多
关键词 Collision avoidance conflict resolution multi-unmanned aerial vehicles(UAVs)system path planning
下载PDF
Planning,monitoring and replanning techniques for handling abnormity in HTN-based planning and execution
20
作者 KANG Kai CHENG Kai +2 位作者 SHAO Tianhao ZHANG Hongjun ZHANG Ke 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1264-1275,共12页
A framework that integrates planning,monitoring and replanning techniques is proposed.It can devise the best solution based on the current state according to specific objectives and properly deal with the influence of... A framework that integrates planning,monitoring and replanning techniques is proposed.It can devise the best solution based on the current state according to specific objectives and properly deal with the influence of abnormity on the plan execution.The framework consists of three parts:the hierarchical task network(HTN)planner based on Monte Carlo tree search(MCTS),hybrid plan monitoring based on forward and backward and norm-based replanning method selection.The HTN planner based on MCTS selects the optimal method for HTN compound task through pre-exploration.Based on specific objectives,it can identify the best solution to the current problem.The hybrid plan monitoring has the capability to detect the influence of abnormity on the effect of an executed action and the premise of an unexecuted action,thus trigger the replanning.The norm-based replanning selection method can measure the difference between the expected state and the actual state,and then select the best replanning algorithm.The experimental results reveal that our method can effectively deal with the influence of abnormity on the implementation of the plan and achieve the target task in an optimal way. 展开更多
关键词 hierarchical task network Monte carlo tree search(MCTS) planNING EXECUTION abnormity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部