期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A New Configuration for Planar Magnetic Elements to Reduce Capacitive Couplings
1
作者 N. Shahabi A.A Boora F. Zare G. Ledwich A. Ghosh 《Journal of Energy and Power Engineering》 2011年第10期966-971,共6页
This paper presents an analysis of planar magnetic element configurations in order to reduce capacitive couplings between the windings. The capacitive couplings between layers of planar magnetic elements introduce a s... This paper presents an analysis of planar magnetic element configurations in order to reduce capacitive couplings between the windings. The capacitive couplings between layers of planar magnetic elements introduce a stray capacitor which can conduct high frequency currents when high dv/dt voltage is applied. High frequency current may cause electromagnetic interference (EMI) and harmonic problems. The investigation and simulation results, both 2D and 3D Finite Element (FE) show the effect of shifting the planar layers in reduction of the capacitive couplings. The simulation results are compared with test results to validate the proposition. 展开更多
关键词 planar magnetic elements capacitive coupling finite element.
下载PDF
A review of high frequency resonant DC-DC power converters:Topologies and planar magnetic technologies 被引量:1
2
作者 XU DianGuo GUAN YueShi +1 位作者 WANG YiJie WANG Wei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第8期1335-1347,共13页
With the development of high frequency resonant DC-DC power converters,the system efficiency,power density and dynamic characteristics have been significantly improved.High frequency resonant DC-DC converters have bee... With the development of high frequency resonant DC-DC power converters,the system efficiency,power density and dynamic characteristics have been significantly improved.High frequency resonant DC-DC converters have been applied in DC grid,renewable energy,transportation,aerospace,point-of-load(POL)power supply and many other fields.Under high switching frequencies,switching loss and magnetic loss are the main concerns;thus,the resonant topology and planar magnetic are two key technologies to reduce loss.This review compares different resonant topologies and analyzes the advantages and disadvantages respectively,such as LLC circuit,dual active bridge(DAB)circuit,and other high order resonant circuits.For planar magnetic components,optimal winding structures,modeling methods and integration methods are thoroughly surveyed.With corresponding topics,the opportunities and challenges in the future development are summarized,which mainly focus on the characteristics of wide bandgap devices,such as the dynamic resistance,output capacitance loss and also the integrated module.This review can be a helpful guidance when designing high frequency resonant DC-DC converters. 展开更多
关键词 high frequency resonant DC-DC power converter planar magnetic components
原文传递
Overview of Planar Magnetics for High-frequency Resonant Converters 被引量:1
3
作者 Yue Liu Yufeng Song +3 位作者 Dingfan Hu Yang Li Zuoqian Zhang Hongfei Wu 《Chinese Journal of Electrical Engineering》 CSCD 2022年第4期61-78,共18页
With the continuous development of power supplies toward miniaturization,light weights,and high levels of integration,research on high-frequency resonant conversion based on planar magnetics is becoming extensive.Comb... With the continuous development of power supplies toward miniaturization,light weights,and high levels of integration,research on high-frequency resonant conversion based on planar magnetics is becoming extensive.Combining the soft-switching characteristics of resonant converters with those of wide bandgap devices,the switching frequency can be increase to the MHz range,and the power density of the entire system can be improved considerably.However,higher switching frequencies impose new requirements for the structural design,loss distribution,and common mode(CM)noise suppression of passive magnetic components.Herein,a thorough survey of the-state-of-the-art of planar magnetics in high-frequency resonant converters is conducted.Printed circuit board winding-based planar magnetics,magnetic integration,and power-loss optimization strategies are summarized in detail.Suppression methods for CM noise in high-frequency planar magnetics are also clarified and discussed.An insight view into the future development of planar magnetics for high-frequency resonant converters is presented. 展开更多
关键词 planar magnetics resonant converter matrix transformer magnetic integration PCB winding loss model loss measurement CM noise suppression
原文传递
Planar Magnetic Integrated Harmonic Filter with Reduced EMI Noise
4
作者 Zijian Lu Tianhao Chen Yitao Liu 《Chinese Journal of Electrical Engineering》 CSCD 2022年第3期49-56,共8页
Through the analysis of the circuit structure and electromagnetic interference(EMI)conduction path,the structure of the traditional harmonic filter is optimized so that it has the ability to suppress EMI.Using the str... Through the analysis of the circuit structure and electromagnetic interference(EMI)conduction path,the structure of the traditional harmonic filter is optimized so that it has the ability to suppress EMI.Using the structure of planar magnetic integration not only ensures the basic harmonic suppression ability of the harmonic filter,but also improves the EMI suppression effect.With a single-phase voltage source 500-W SiC inverter as the platform,the feasibility and effectiveness of the design scheme are experimentally verified.The results indicated that the planar magnetic integrated harmonic EMI filter satisfies the design requirements.Additionally,the proposed planar magnetic integration scheme can significantly reduce the volume and weight of the filter and increase the power density of the entire system. 展开更多
关键词 planar magnetic integration EMI filter harmonic filter voltage-source inverter
原文传递
Method of measuring rotation speed of high spinning projectile based on plane magnetic induction coil
5
作者 CAO Yong-hong XUE Kai-yun JING Yong-qiang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第4期317-323,共7页
For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable mag... For the test of rotation speed of high spinning projectile, the general formula of the motional electromotive force (MEMF) of planar magnetic induction coil (PMIC) is derived in case of 3D rotation in a stable magnetic field. Under a reasona-ble assumption, the MEMF of PMIC is simplified after the aforementioned general formula is used to calculate high spinning PMIC in the geomagnetic field environment. The determination approach of half-cycle is discussed and the method of rotation speed test is studied, and a test is conducted in the paper. The rotation speed curve obtained by the approach in this paper is consistent with the curve by telemetry. 展开更多
关键词 planar magnetic induction coil 3D rotation high spinning projectile determination approach of half-cycle rotation speed test method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部