Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes l...Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.展开更多
The boom in ultrathin electronic devices and the growing need for humanization greatly facilitated the development of wearable fexible microdevices.But the technology to deposit electrode material on fexible substrate...The boom in ultrathin electronic devices and the growing need for humanization greatly facilitated the development of wearable fexible microdevices.But the technology to deposit electrode material on fexible substrate is still in its infancy.Herein,the fexible symmetric micro-supercapacitors made of carbon nanotubes(CNTs)on commercial printing paper as electrode materials were fabricated by combining tetrahedral preparator auxiliary coating method and laser-cutting interdigital configuration technique on a large scale.The electrochemical performance of the obtained micro-supercapacitors can be controlled and tuned by simple choosing different models of tetrahedral preparatory to obtain CNTs film of different thicknesses.As expected,the micro-supercapacitor based on CNTs film can deliver an areal capacitance up to 4.56 m F/cm^(2) at current of 0.02 m A.Even if,micro-supercapacitor undergoes continuous 10000 cycles,the performance of device can still remain nearly 100%.The as-demonstrated tetrahedral preparator auxiliary coating method and laser-cutting interdigital configuration technique provide new perspective for preparing microelectronics in an economical way.The paper electrode appended by CNTs achieves steerable areal capacitance,showing broad application prospect in fabricating asymmetric micro-supercapacitor with fexible planar configurations in the future.展开更多
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless...Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.展开更多
Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(S...Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.展开更多
With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are ...With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are prepared by KOH activation using Qamgur precursor,exhibiting three-dimensional(3D)hierarchical porous structure.Benefiting from unobstructed 3D hierarchical porous structure,BDCs provide an excellent specific capacitance of 433 F g^(-1)and prominent cyclability without capacitance degradation after 50000 cycles at 50 A g^(-1).Furthermore,BDC-based planar micro-supercapacitors(MSCs)without metal collector,prepared by mask-assisted coating,exhibit outstanding areal-specific capacitance of 84 mF cm^(-2)and areal energy density of 10.6μWh cm^(-2),exceeding most of the previous carbon-based MSCs.Impressively,the MSCs disclose extraordinary flexibility with capacitance retention of almost 100%under extreme bending state.More importantly,a flexible planar integrated system composed of the MSC and temperature sensor is assembled to efficiently monitor the temperature variation,providing a feasible route for flexible MSC-based functional micro-devices.展开更多
Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restr...Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.展开更多
We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both pla...We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both planar Hall resistance and anisotropic longitudinal resistance, and the phenomena appeared are precisely described by the theoretical formulation of the planar Hall effect (PHE). In addition, anisotropic orbital magnetoresistance rather than topologically nontrivial chiral anomalies dominates the PHE in Bi_(2)Rh_(3)Se_(2). The finding not only provides another platform for understanding the mechanism of PHE, but could also be beneficial for future planar Hall sensors based on two-dimensional materials.展开更多
This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed ...This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed a 50% cut-off wavelength of 1.73 μm, a maximum detectivity of 8.73 × 10^(10) cm·Hz^(1/2)/W, and a minimum dark current density of 1.02 × 10^(-5) A/cm^(2).Additionally, a maximum quantum efficiency of 60.3% was achieved. Subsequent optimization of fabrication enabled the realization of a 320 × 256 focal plane array that exhibited satisfactory imaging results. Remarkably, the GaSb planar detectors demonstrated potential in low-cost short wavelength infrared imaging, without requiring material epitaxy or deposition.展开更多
Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancemen...Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.展开更多
Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared...Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices.展开更多
Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar slid...Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.展开更多
Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipula...Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.展开更多
The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove tha...The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove that TCC holds for planar graph with Δ = 6 and every 7-cycle contains at most two chords.展开更多
The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalit...The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief.展开更多
Graph theory has a significant impact and is crucial in the structure of many real-life situations.To simulate uncertainty and ambiguity,many extensions of graph theoretical notions were created.Planar graphs play a v...Graph theory has a significant impact and is crucial in the structure of many real-life situations.To simulate uncertainty and ambiguity,many extensions of graph theoretical notions were created.Planar graphs play a vital role in modelling which has the property of non-crossing edges.Although crossing edges benefit,they have some drawbacks,which paved the way for the introduction of planar graphs.The overall purpose of the study is to contribute to the conceptual development of the Pythagorean Neutrosophic graph.The basic methodology of our research is the incorporation of the analogous concepts of planar graphs in the Pythagorean Neutrosophic graphs.The significant finding of our research is the introduction of Pythagorean Neutrosophic Planar graphs,a conceptual blending of Pythagorean Neutro-sophic and Planar graphs.The idea of Pythagorean Neutrosophic multigraphs and dual graphs are also introduced to deal with the ambiguous situations.This paper investigates the Pythagorean Neutrosophic planar values,which form the edges of the Pythagorean neutrosophic graphs.The concept of Pythagorean Neutrosophic dual graphs,isomorphism,co-weak and weak isomorphism have also been explored for Pythagorean Neutrosophic planar graphs.A decision-making algorithm was proposed with a numerical illustra-tion by using the Pythagorean Neutrosophic fuzzy graph.展开更多
Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-frie...Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells.展开更多
With the support by the National Natural Science Foundation of China and National Key R&D Program of China,the research team led by Prof.Wu ZhongShuai(吴忠帅),in collaboration with the team led by Prof.Feng Liang,...With the support by the National Natural Science Foundation of China and National Key R&D Program of China,the research team led by Prof.Wu ZhongShuai(吴忠帅),in collaboration with the team led by Prof.Feng Liang,at Dalian Institute of Chemical Physics,Chinese Academy of Sciences.展开更多
A 5G wireless system requests a high-performance compact antenna device.This research work aims to report the characterization and verification of the artificial magnetic conductor(AMC)metamaterial for a high-gain pla...A 5G wireless system requests a high-performance compact antenna device.This research work aims to report the characterization and verification of the artificial magnetic conductor(AMC)metamaterial for a high-gain planar antenna.The configuration is formed by a double-side structure on an intrinsic dielectric slab.The 2-D periodic pattern as an impedance surface is mounted on the top surface,whereas at the bottom surface the ground plane with an inductive narrow aperture source is embedded.The characteristic of the resonant transmission is illustrated based on the electromagnetic virtual object of the AMC resonant structure to reveal the unique property of a magnetic material response.The characteristics of the AMC metamaterial and the planar antenna synthesis are investigated and verified by experiment using a low-cost FR4 dielectric material.The directional antenna gain is obviously enhanced by guiding a primary field radiation.The loss effect in a dielectric slab is essentially studied having an influence on antenna radiation.The verification shows a peak of the antenna gain around 9.7 dB at broadside which is improved by 6.2 dB in comparison with the primary aperture antenna without the AMC structure.The thin antenna profile ofλ/37.5 is achieved at 10GHz for 5Gevolution.The emission property in an AMCstructure herein contributes to the development of a lowprofile and high-gain planar antenna for a compact wireless component.展开更多
The planar Hall effect(PHE),which originates from anisotropic magnetoresistance,presents a qualitative and simple approach to characterize electronic structures of quantum materials by applying an in-plane rotating ma...The planar Hall effect(PHE),which originates from anisotropic magnetoresistance,presents a qualitative and simple approach to characterize electronic structures of quantum materials by applying an in-plane rotating magnetic field to induce identical oscillations in both longitudinal and transverse resistances.In this review,we focus on the recent research on the PHE in various quantum materials,including ferromagnetic materials,topological insulators,Weyl semimetals,and orbital anisotropic matters.Firstly,we briefly introduce the family of Hall effect and give a basic deduction of PHE formula with the second-order resistance tensor,showing the mechanism of the characteristicπ-period oscillation in trigonometric function form with aπ/4 phase delay between the longitudinal and transverse resistances.Then,we will introduce the four main mechanisms to realize PHE in quantum materials.After that,the origin of the anomalous planar Hall effect(APHE)results,of which the curve shapes deviate from that of PHE,will be reviewed and discussed.Finally,the challenges and prospects for this field of study are discussed.展开更多
To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11...To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.展开更多
基金financially supported by the National Natural Science Foundation of China(22125903,51872283,22109160,22005297)the Dalian Innovation Support Plan for High Level Talents(2019RT09)+6 种基金the The Joint Fund of the Yulin University and the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019),DICP(DICP ZZBS201802,DICP I2020032)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)the China Postdoctoral Science Foundation(2021M693126,2020M680995,2021M703145,2021M693127)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210311)the Plan for promoting innovative talents of Education Department of Liaoning Province(LCR2018015)the Shenyang Youth Science and Technology Project(RC200444)the Natural Science Foundation of Liaoning Province(2021-MS-234)。
文摘Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.
基金supported by the National Natural Science Foundation of China(No.51701002,No.51871001,No.51672001)。
文摘The boom in ultrathin electronic devices and the growing need for humanization greatly facilitated the development of wearable fexible microdevices.But the technology to deposit electrode material on fexible substrate is still in its infancy.Herein,the fexible symmetric micro-supercapacitors made of carbon nanotubes(CNTs)on commercial printing paper as electrode materials were fabricated by combining tetrahedral preparator auxiliary coating method and laser-cutting interdigital configuration technique on a large scale.The electrochemical performance of the obtained micro-supercapacitors can be controlled and tuned by simple choosing different models of tetrahedral preparatory to obtain CNTs film of different thicknesses.As expected,the micro-supercapacitor based on CNTs film can deliver an areal capacitance up to 4.56 m F/cm^(2) at current of 0.02 m A.Even if,micro-supercapacitor undergoes continuous 10000 cycles,the performance of device can still remain nearly 100%.The as-demonstrated tetrahedral preparator auxiliary coating method and laser-cutting interdigital configuration technique provide new perspective for preparing microelectronics in an economical way.The paper electrode appended by CNTs achieves steerable areal capacitance,showing broad application prospect in fabricating asymmetric micro-supercapacitor with fexible planar configurations in the future.
基金financially supported by the National Natural Science Foundation of China (Grants. 22075279, 22279137, 22125903, 22109040)National Key R&D Program of China (Grant 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents (2019RT09)Dalian National Labo- ratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL202016, DNL202019), DICP (DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, YLU- DNL Fund 2021009)。
文摘Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
基金supported by the National Natural Science Foundation of China(Nos.22109040,22125903,22279137)Top-Notch Talent Program of Henan Agricultural University(No.30500947)+5 种基金the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21000000)DICP(No.DICP I202032)Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(Nos.DNL202016,DNL202019)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(No.YJ20210311)China Postdoctoral Science Foundation(No.2021M703145)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Nos.YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.
基金support from Liao Ning Revitalization Talents Program(XLYC1907144)Dalian Youth Science and Technology Star Project Support Program(No.2017RQ104)+6 种基金National Key Research and Development Program of China(No.2020YFB0311600)National Natural Science Foundation of China(Grant Nos.22125903,51872283,22075279)Liaoning BaiQianWan Talents Program(Grant XLYC1807153)Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019)DICP(DICP ZZBS201802,DICP I2020032)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,2021009).
文摘With the rapid development of flexible and portable microelectronics,the extreme demand for miniaturized,mechanically flexible,and integrated microsystems are strongly stimulated.Here,biomass-derived carbons(BDCs)are prepared by KOH activation using Qamgur precursor,exhibiting three-dimensional(3D)hierarchical porous structure.Benefiting from unobstructed 3D hierarchical porous structure,BDCs provide an excellent specific capacitance of 433 F g^(-1)and prominent cyclability without capacitance degradation after 50000 cycles at 50 A g^(-1).Furthermore,BDC-based planar micro-supercapacitors(MSCs)without metal collector,prepared by mask-assisted coating,exhibit outstanding areal-specific capacitance of 84 mF cm^(-2)and areal energy density of 10.6μWh cm^(-2),exceeding most of the previous carbon-based MSCs.Impressively,the MSCs disclose extraordinary flexibility with capacitance retention of almost 100%under extreme bending state.More importantly,a flexible planar integrated system composed of the MSC and temperature sensor is assembled to efficiently monitor the temperature variation,providing a feasible route for flexible MSC-based functional micro-devices.
基金This work was supported partly by the China Postdoctoral Science Foundation(2023M730201)the Fundamental Research Funds for the Central Universities(2023XKRC027)+1 种基金the Fundamental Research Funds for the 173 project under Grant 2020-JCJQ-ZD-043the project under Grant 22TQ0403ZT07001 and Wei Zhen Limited Liability Company.
文摘Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.
基金supported by the National Natural Science Foundation of China (Grant Nos.U19A2093,11904002,and 12074372)the Excellent Youth Project of Natural Science Foundation of Anhui Province (Grant No.2308085Y07)。
文摘We systematically investigate in-plane transport properties of ternary chalcogenideBi_(2)Rh_(3)Se_(2).Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both planar Hall resistance and anisotropic longitudinal resistance, and the phenomena appeared are precisely described by the theoretical formulation of the planar Hall effect (PHE). In addition, anisotropic orbital magnetoresistance rather than topologically nontrivial chiral anomalies dominates the PHE in Bi_(2)Rh_(3)Se_(2). The finding not only provides another platform for understanding the mechanism of PHE, but could also be beneficial for future planar Hall sensors based on two-dimensional materials.
文摘This paper examines GaSb short-wavelength infrared detectors employing planar PN junctions. The fabrication was based on the Zn diffusion process and the diffusion temperature was optimized. Characterization revealed a 50% cut-off wavelength of 1.73 μm, a maximum detectivity of 8.73 × 10^(10) cm·Hz^(1/2)/W, and a minimum dark current density of 1.02 × 10^(-5) A/cm^(2).Additionally, a maximum quantum efficiency of 60.3% was achieved. Subsequent optimization of fabrication enabled the realization of a 320 × 256 focal plane array that exhibited satisfactory imaging results. Remarkably, the GaSb planar detectors demonstrated potential in low-cost short wavelength infrared imaging, without requiring material epitaxy or deposition.
基金the National Key Research and Development Program of China(Grant No.2022YFA1404104)the National Natural Science Foundation of China(Grant Nos.12025509 and 12104521)Fundamental Research Project of Shenzhen(Grant No.JCYJ20230808105009018).
文摘Magneto-optical traps (MOTs) composed of magnetic fields and light fields have been widely utilized to cool andconfine microscopic particles. Practical technology applications require miniaturized MOTs. The advancement of planaroptics has promoted the development of compact MOTs. In this article, we review the development of compact MOTs basedon planar optics. First, we introduce the standardMOTs. We then introduce the gratingMOTs with micron structures, whichhave been used to build cold atomic clocks, cold atomic interferometers, and ultra-cold sources. Further, we introducethe integrated MOTs based on nano-scale metasurfaces. These new compact MOTs greatly reduce volume and powerconsumption, and provide new opportunities for fundamental research and practical applications.
基金Project supported by the open research fund of Songshan Lake Materials Laboratory(Grant No.2021SLABFN11)the National Natural Science Foundation of China(Grant Nos.U2130101 and 92165204)+5 种基金Natural Science Foundation of Guangdong Province(Grant No.2022A1515010035)Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011798)the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)the Open Project of Key Laboratory of Optoelectronic Materials and Technologies(Grant No.OEMT-2023-ZTS-01)the National Key R&D Program of China(Grant Nos.2023YFF0718400 and 2023YFA1406500)(national)college students innovation and entrepreneurship training program,Sun Yat-sen University(Grant No.202310359).
文摘Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices.
基金funded by National Natural Science Foundation,China(Grant Nos.41972264 and 42207214)Zhejiang Provincial Natural Science Foundation,China(Grant No.LR22E080002).
文摘Planar sliding is one of the frequently observed types of failure in rock slopes.Kinematic analysis is a classic and widely used method to examine the potential failure modes in rock masses.The accuracy of planar sliding kinematic analysis is significantly influenced by the value assigned to the lateral limit angleγlim.However,the assignment ofγlim is currently used generally based on an empirical criterion.This study aims to propose an approach for determining the value ofγlim in deterministic and probabilistic kinematic planar sliding analysis.A new perspective is presented to reveal thatγlim essentially influences the probability of forming a potential planar sliding block.The procedure to calculate this probability is introduced using the block theory method.It is found that the probability is correlated with the number of discontinuity sets presented in rock masses.Thus,different values ofγlim for rock masses with different sets of discontinuities are recommended in both probabilistic and deterministic planar sliding kinematic analyses;whereas a fixed value ofγlim is commonly assigned to different types of rock masses in traditional method.Finally,an engineering case was used to compare the proposed and traditional kinematic analysis methods.The error rates of the traditional method vary from 45%to 119%,while that of the proposed method ranges between 1%and 17%.Therefore,it is likely that the proposed method is superior to the traditional one.
文摘Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.
文摘The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove that TCC holds for planar graph with Δ = 6 and every 7-cycle contains at most two chords.
基金the National Natural Science Foundation of China,China (Grant Nos.22125903,51872283,22109040)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA21000000)+4 种基金the Dalian Innovation Support Plan for High Level Talents,China (2019RT09)DICP,China (DICP I202032)the Dalian National Laboratory For Clean Energy (DNL),CAS,DNL Cooperation Fund,CAS,China (DNL202016,DNL202019)the Top-Notch Talent Program of Henan Agricultural University,China (30500947)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy,China (YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Group Research Project under grant number(R.G.P.2/181/44).
文摘Graph theory has a significant impact and is crucial in the structure of many real-life situations.To simulate uncertainty and ambiguity,many extensions of graph theoretical notions were created.Planar graphs play a vital role in modelling which has the property of non-crossing edges.Although crossing edges benefit,they have some drawbacks,which paved the way for the introduction of planar graphs.The overall purpose of the study is to contribute to the conceptual development of the Pythagorean Neutrosophic graph.The basic methodology of our research is the incorporation of the analogous concepts of planar graphs in the Pythagorean Neutrosophic graphs.The significant finding of our research is the introduction of Pythagorean Neutrosophic Planar graphs,a conceptual blending of Pythagorean Neutro-sophic and Planar graphs.The idea of Pythagorean Neutrosophic multigraphs and dual graphs are also introduced to deal with the ambiguous situations.This paper investigates the Pythagorean Neutrosophic planar values,which form the edges of the Pythagorean neutrosophic graphs.The concept of Pythagorean Neutrosophic dual graphs,isomorphism,co-weak and weak isomorphism have also been explored for Pythagorean Neutrosophic planar graphs.A decision-making algorithm was proposed with a numerical illustra-tion by using the Pythagorean Neutrosophic fuzzy graph.
基金supported by the National Key Research and Development Program of China (2020YFA07150002018YFB1503100)the Suzhou Fangsheng FS-300 for research support。
文摘Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells.
文摘With the support by the National Natural Science Foundation of China and National Key R&D Program of China,the research team led by Prof.Wu ZhongShuai(吴忠帅),in collaboration with the team led by Prof.Feng Liang,at Dalian Institute of Chemical Physics,Chinese Academy of Sciences.
基金funded by National Science,Research and Innovation Fund(NSRF)King Mongkut’s University of Technology North Bangkok with Contract No.KMUTNB-FF-65-26.
文摘A 5G wireless system requests a high-performance compact antenna device.This research work aims to report the characterization and verification of the artificial magnetic conductor(AMC)metamaterial for a high-gain planar antenna.The configuration is formed by a double-side structure on an intrinsic dielectric slab.The 2-D periodic pattern as an impedance surface is mounted on the top surface,whereas at the bottom surface the ground plane with an inductive narrow aperture source is embedded.The characteristic of the resonant transmission is illustrated based on the electromagnetic virtual object of the AMC resonant structure to reveal the unique property of a magnetic material response.The characteristics of the AMC metamaterial and the planar antenna synthesis are investigated and verified by experiment using a low-cost FR4 dielectric material.The directional antenna gain is obviously enhanced by guiding a primary field radiation.The loss effect in a dielectric slab is essentially studied having an influence on antenna radiation.The verification shows a peak of the antenna gain around 9.7 dB at broadside which is improved by 6.2 dB in comparison with the primary aperture antenna without the AMC structure.The thin antenna profile ofλ/37.5 is achieved at 10GHz for 5Gevolution.The emission property in an AMCstructure herein contributes to the development of a lowprofile and high-gain planar antenna for a compact wireless component.
基金Project supported by the National Natural Science Foundation of China(Grant No.11904015)the Fundamental Research Funds for the Central Universities(Grant No.YWF-22-K-101)the National Key R&D Program of China(Grant No.2018YFE0202700)。
文摘The planar Hall effect(PHE),which originates from anisotropic magnetoresistance,presents a qualitative and simple approach to characterize electronic structures of quantum materials by applying an in-plane rotating magnetic field to induce identical oscillations in both longitudinal and transverse resistances.In this review,we focus on the recent research on the PHE in various quantum materials,including ferromagnetic materials,topological insulators,Weyl semimetals,and orbital anisotropic matters.Firstly,we briefly introduce the family of Hall effect and give a basic deduction of PHE formula with the second-order resistance tensor,showing the mechanism of the characteristicπ-period oscillation in trigonometric function form with aπ/4 phase delay between the longitudinal and transverse resistances.Then,we will introduce the four main mechanisms to realize PHE in quantum materials.After that,the origin of the anomalous planar Hall effect(APHE)results,of which the curve shapes deviate from that of PHE,will be reviewed and discussed.Finally,the challenges and prospects for this field of study are discussed.
基金the Central Government Guided Local Science and Technology Development Projects(YDZJSX2021A010)China Postdoctoral Science Foundation(No.2022M710541)+5 种基金the National Natural Science Foundation of China(51704209,52274397,U1810208)the Projects of International Cooperation in Shanxi(201803D421086)Shanxi Province Patent Promotion Implementation Fund(20200718)Research Project Supported by Shanxi Scholarship Council of China(2022-038)Science and Technology Major Project of Shanxi Province(20191102008,20191102007,20181101008)Taishan Scholars Project Special Fund(2021)。
文摘To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.