In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned man...In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.展开更多
A configuration point consists of the position and orientation of a rigid body which are fully described by the position of the frame’s origin and the orientation of its axes, relative to the reference frame. We desc...A configuration point consists of the position and orientation of a rigid body which are fully described by the position of the frame’s origin and the orientation of its axes, relative to the reference frame. We describe an algorithm to robustly predict futuristic configurations of a moving target in a time-varying environment. We use the Kalman filter for tracking and motion prediction purposes because it is a very effective and useful estimator. It implements a predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance. The target motion is unconstrained. The proposed algorithm may be viewed as a seed for a range of applications, one of which is robot motion planning in a time-changing environment. A significant feature of the proposed algorithm (when compared to similar ones) is its ability to embark the prediction process from the first time step;no need to wait for few time steps as in the autoregressive-based systems. Simulation results supports our claims and demonstrate the superiority of the proposed model.展开更多
A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an a...A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an additional integral equality is obtained. By adding both sides of this integral equality to both sides of the conventional CVBIE, the amended boundary integral equation (BIE) is obtained. The method based on the discretization of the amended BIE is called the amended influence matrix method. With this method, for the Neumann boundary value problem (BVP) of an interior region, a unique solution for the displacement can be obtained. Several numerical examples are provided to prove the efficiency of the suggested method.展开更多
In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a R...In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a Riemannian manifold with boundary;globally.under the assumption of energy conservation, the system behaves like a billiards system over a Riemannina manifold with boundary展开更多
The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the ide...The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.展开更多
Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of fail...Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of failing to account for the effects of dynamic stiffening, conventional methods based on the linear theories can lead to erroneous results in many practical applications. In this paper, the idea of 'centrifugal potential field', which induced by large overall rotation is introduced, and the motion equation of a coupled rigid-flexible system by employing Hamilton's principle is established. Based on this equation, first it is proved that the elastic motion of the system has periodic property, then by using Frobenius' method its exact solution is obtained. The influences of large overall rigid motion on the elastic vibration mode shape and frequency are analysed through the numerical examples.展开更多
Most computational structural engineers are paying more attention to applying loads rather than to DBCs (Displacement Boundary Conditions) because most static stable mechanical structures are working under already p...Most computational structural engineers are paying more attention to applying loads rather than to DBCs (Displacement Boundary Conditions) because most static stable mechanical structures are working under already prescribed displacement boundary conditions. In all of the computational analysis of solving a system of algebraic equations, such as FEM (Finite Element Method), three translational and three rotational degrees of freedom (DOF) should be constrained (by applying DBCs) before solving the system of algebraic equation in order to prevent rigid body motions of the analysis results (singular problem). However, it is very difficult for an inexperienced engineer or designer to apply proper DBCs in the case of thermal stress analysis where no prescribed DBCs or constraints exist, for example in water quenching for heat treatment. Moreover, improper DBCs cause incorrect solutions in thermal stress analysis, such as stress concentration or unreasonable deformation phases. To avoid these problems, we studied a technique which performs the thermal stress analysis without any DBCs; and then removes rigid body motions from the deformation results in a post process step as the need arises. The proposed technique makes it easy to apply DBCs and prevent the error caused by improper DBCs. We proved it was mathematically possible to solve a system of algebraic equations without a step of applying DBCs. We also compared the analysis results with those of a traditional procedure for real castings.展开更多
In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint...In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint. A general kinematic model of the space robot was established based on the law of linear and angular momentum conservation. A combinational joint model was established combined with bionic joint and closed motion. The attitude transformation of planar,two DOF and three DOF is analyzed and simulated by the model,and it is verified that the feasibility of attitude transformation in three DOF space. Finally,the specific scheme of disturbance elimination in attitude transformation is presented and simulation results are obtained.Therefore,the range of application field of the bionic joint model has been expanded.展开更多
Recognizing and reproducing spatiotemporal motions are necessary when analyzing behaviors andmovements during human-robot interaction. Rigid body motion trajectories are proven as compact and informativeclues in chara...Recognizing and reproducing spatiotemporal motions are necessary when analyzing behaviors andmovements during human-robot interaction. Rigid body motion trajectories are proven as compact and informativeclues in characterizing motions. A flexible dual square-root function (DSRF) descriptor for representing rigid bodymotion trajectories, which can offer robustness in the description over raw data, was proposed in our previousstudy. However, this study focuses on exploring the application of the DSRF descriptor for effective backwardmotion reproduction and motion recognition. Specifically, two DSRF-based reproduction methods are initiallyproposed, including the recursive reconstruction and online optimization. New trajectories with novel situationsand contextual information can be reproduced from a single demonstration while preserving the similarities withthe original demonstration. Furthermore, motion recognition based on DSRF descriptor can be achieved byemploying a template matching method. Finally, the experimental results demonstrate the effectiveness of theproposed method for rigid body motion reproduction and recognition.展开更多
针对传统四足机器人运动控制器增益固定,极易造成控制系统控制精度较差、动态性能稳定性不足等问题,设计了一种基于模糊理论与全身运动控制(whole body control,WBC)相结合的新型控制器。首先,根据四足机器人的质量分布特性,建立单刚体...针对传统四足机器人运动控制器增益固定,极易造成控制系统控制精度较差、动态性能稳定性不足等问题,设计了一种基于模糊理论与全身运动控制(whole body control,WBC)相结合的新型控制器。首先,根据四足机器人的质量分布特性,建立单刚体质心动力学模型,将贝塞尔曲线作为足端轨迹的规划曲线并结合机器人质心曲线规划策略,增强机器人运动的稳定性与安全性;其次,将全身运动控制系统中的位置与速度增益基于专家经验建立模糊规则库来进行自适应优化,以提高系统的鲁棒性;最后,通过三维仿真平台对该算法进行可行性验证。实验结果表明,所提出的自适应控制方法与传统的WBC相比,提高了四足机器人在轨迹跟踪过程中的稳定性和准确性。展开更多
Accurate prediction of the motion of a body moving around another one in anunbounded fluid and determination of the hydrodynamic interaction between them are important in thecoastal and offshore engineering. For two-d...Accurate prediction of the motion of a body moving around another one in anunbounded fluid and determination of the hydrodynamic interaction between them are important in thecoastal and offshore engineering. For two-dimensional cases, most of the previous studies werefocused on the interaction between circular cylinders without considering the non-circularsituation. To break through the limitation of ''circular'' bodies, in the present paper the boundaryperturbation method was employed to investigate the motion of a slightly distorted circular cylinderaround a circular one. An approximate complex velocity potential in terms of double infinite seriesexpanded at two singular points was derived using the method of continued fractions. Thehydrodynamic interaction between two cylinders was computed by solving the dynamical equations ofmotion. In a relative coordinate system moving with the uniform stream, the kinetic energy of thefluid was expressed as a function of fifteen added masses. Approximate analytical solutions of addedmasses in the series form were obtained and applied to determine the trajectories of the slightlydistorted circular cylinder around a fixed circular one. Numerical results show that the presence ofthe circular cylinder affects the planar motion of the slightly distorted circular cylinder and theinitial configuration of the slightly distorted circular cylinder has a decisive influence on thedevelopment of its rotational motion.展开更多
This paper is the second of two companion papers addressing the dynamics of two coupled masses sliding on analytical surfaces and interacting with one another. The motion occurs under the effect of gravity, the reacti...This paper is the second of two companion papers addressing the dynamics of two coupled masses sliding on analytical surfaces and interacting with one another. The motion occurs under the effect of gravity, the reaction force of the surface and basal friction. The interaction force maintains the masses at a fixed distance and lies on the line connecting them. The equations of motion form a system of ordinary differential equations that are solved through a fourth-order Runge–Kutta numerical scheme. In the first paper we considered an approximate method holding when the line joining the masses is almost tangent to the surface at the instant mass positions. In this second paper we provide a general solution. Firstly, we present special cases in which the system has exact solutions. Second, we consider a series of numerical examples where the interest is focused on the trajectories of the masses and on the intensity and changes of the interaction force.展开更多
基金sponsored by Bureau Veritas under the administration of Dr.ime Malenica
文摘In Fluid Structure Interaction(FSI) problems encountered in marine hydrodynamics, the pressure field and the velocity of the rigid body are tightly coupled. This coupling is traditionally resolved in a partitioned manner by solving the rigid body motion equations once per nonlinear correction loop, updating the position of the body and solving the fluid flow equations in the new configuration. The partitioned approach requires a large number of nonlinear iteration loops per time–step. In order to enhance the coupling, a monolithic approach is proposed in Finite Volume(FV) framework,where the pressure equation and the rigid body motion equations are solved in a single linear system. The coupling is resolved by solving the rigid body motion equations once per linear solver iteration of the pressure equation, where updated pressure field is used to calculate new forces acting on the body, and by introducing the updated rigid body boundary velocity in to the pressure equation. In this paper the monolithic coupling is validated on a simple 2D heave decay case. Additionally, the method is compared to the traditional partitioned approach(i.e. "strongly coupled" approach) in terms of computational efficiency and accuracy. The comparison is performed on a seakeeping case in regular head waves, and it shows that the monolithic approach achieves similar accuracy with fewer nonlinear correctors per time–step. Hence, significant savings in computational time can be achieved while retaining the same level of accuracy.
文摘A configuration point consists of the position and orientation of a rigid body which are fully described by the position of the frame’s origin and the orientation of its axes, relative to the reference frame. We describe an algorithm to robustly predict futuristic configurations of a moving target in a time-varying environment. We use the Kalman filter for tracking and motion prediction purposes because it is a very effective and useful estimator. It implements a predictor-corrector type estimator that is optimal in the sense that it minimizes the estimated error covariance. The target motion is unconstrained. The proposed algorithm may be viewed as a seed for a range of applications, one of which is robot motion planning in a time-changing environment. A significant feature of the proposed algorithm (when compared to similar ones) is its ability to embark the prediction process from the first time step;no need to wait for few time steps as in the autoregressive-based systems. Simulation results supports our claims and demonstrate the superiority of the proposed model.
文摘A conventional complex variable boundary integral equation (CVBIE) in plane elasticity is provided. After using the Somigliana identity between a particular fundamental stress field and a physical stress field, an additional integral equality is obtained. By adding both sides of this integral equality to both sides of the conventional CVBIE, the amended boundary integral equation (BIE) is obtained. The method based on the discretization of the amended BIE is called the amended influence matrix method. With this method, for the Neumann boundary value problem (BVP) of an interior region, a unique solution for the displacement can be obtained. Several numerical examples are provided to prove the efficiency of the suggested method.
文摘In this paper , the unilaterally constrained motions of a large class of rigid bodiessystems are studied both locally and globally. The main conclusion is that locally,such a system bahaves like a particle in a Riemannian manifold with boundary;globally.under the assumption of energy conservation, the system behaves like a billiards system over a Riemannina manifold with boundary
文摘The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.
文摘Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of failing to account for the effects of dynamic stiffening, conventional methods based on the linear theories can lead to erroneous results in many practical applications. In this paper, the idea of 'centrifugal potential field', which induced by large overall rotation is introduced, and the motion equation of a coupled rigid-flexible system by employing Hamilton's principle is established. Based on this equation, first it is proved that the elastic motion of the system has periodic property, then by using Frobenius' method its exact solution is obtained. The influences of large overall rigid motion on the elastic vibration mode shape and frequency are analysed through the numerical examples.
文摘Most computational structural engineers are paying more attention to applying loads rather than to DBCs (Displacement Boundary Conditions) because most static stable mechanical structures are working under already prescribed displacement boundary conditions. In all of the computational analysis of solving a system of algebraic equations, such as FEM (Finite Element Method), three translational and three rotational degrees of freedom (DOF) should be constrained (by applying DBCs) before solving the system of algebraic equation in order to prevent rigid body motions of the analysis results (singular problem). However, it is very difficult for an inexperienced engineer or designer to apply proper DBCs in the case of thermal stress analysis where no prescribed DBCs or constraints exist, for example in water quenching for heat treatment. Moreover, improper DBCs cause incorrect solutions in thermal stress analysis, such as stress concentration or unreasonable deformation phases. To avoid these problems, we studied a technique which performs the thermal stress analysis without any DBCs; and then removes rigid body motions from the deformation results in a post process step as the need arises. The proposed technique makes it easy to apply DBCs and prevent the error caused by improper DBCs. We proved it was mathematically possible to solve a system of algebraic equations without a step of applying DBCs. We also compared the analysis results with those of a traditional procedure for real castings.
文摘In order to realize the small error attitude transformation of a free floating space robot,a new method of three degrees of freedom( DOF) attitude transformation was proposed for the space robot using a bionic joint. A general kinematic model of the space robot was established based on the law of linear and angular momentum conservation. A combinational joint model was established combined with bionic joint and closed motion. The attitude transformation of planar,two DOF and three DOF is analyzed and simulated by the model,and it is verified that the feasibility of attitude transformation in three DOF space. Finally,the specific scheme of disturbance elimination in attitude transformation is presented and simulation results are obtained.Therefore,the range of application field of the bionic joint model has been expanded.
基金the Science and Technology Commission of Shanghai Municipality(No.20DZ2220400)the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2021QN117)。
文摘Recognizing and reproducing spatiotemporal motions are necessary when analyzing behaviors andmovements during human-robot interaction. Rigid body motion trajectories are proven as compact and informativeclues in characterizing motions. A flexible dual square-root function (DSRF) descriptor for representing rigid bodymotion trajectories, which can offer robustness in the description over raw data, was proposed in our previousstudy. However, this study focuses on exploring the application of the DSRF descriptor for effective backwardmotion reproduction and motion recognition. Specifically, two DSRF-based reproduction methods are initiallyproposed, including the recursive reconstruction and online optimization. New trajectories with novel situationsand contextual information can be reproduced from a single demonstration while preserving the similarities withthe original demonstration. Furthermore, motion recognition based on DSRF descriptor can be achieved byemploying a template matching method. Finally, the experimental results demonstrate the effectiveness of theproposed method for rigid body motion reproduction and recognition.
文摘针对传统四足机器人运动控制器增益固定,极易造成控制系统控制精度较差、动态性能稳定性不足等问题,设计了一种基于模糊理论与全身运动控制(whole body control,WBC)相结合的新型控制器。首先,根据四足机器人的质量分布特性,建立单刚体质心动力学模型,将贝塞尔曲线作为足端轨迹的规划曲线并结合机器人质心曲线规划策略,增强机器人运动的稳定性与安全性;其次,将全身运动控制系统中的位置与速度增益基于专家经验建立模糊规则库来进行自适应优化,以提高系统的鲁棒性;最后,通过三维仿真平台对该算法进行可行性验证。实验结果表明,所提出的自适应控制方法与传统的WBC相比,提高了四足机器人在轨迹跟踪过程中的稳定性和准确性。
文摘Accurate prediction of the motion of a body moving around another one in anunbounded fluid and determination of the hydrodynamic interaction between them are important in thecoastal and offshore engineering. For two-dimensional cases, most of the previous studies werefocused on the interaction between circular cylinders without considering the non-circularsituation. To break through the limitation of ''circular'' bodies, in the present paper the boundaryperturbation method was employed to investigate the motion of a slightly distorted circular cylinderaround a circular one. An approximate complex velocity potential in terms of double infinite seriesexpanded at two singular points was derived using the method of continued fractions. Thehydrodynamic interaction between two cylinders was computed by solving the dynamical equations ofmotion. In a relative coordinate system moving with the uniform stream, the kinetic energy of thefluid was expressed as a function of fifteen added masses. Approximate analytical solutions of addedmasses in the series form were obtained and applied to determine the trajectories of the slightlydistorted circular cylinder around a fixed circular one. Numerical results show that the presence ofthe circular cylinder affects the planar motion of the slightly distorted circular cylinder and theinitial configuration of the slightly distorted circular cylinder has a decisive influence on thedevelopment of its rotational motion.
文摘This paper is the second of two companion papers addressing the dynamics of two coupled masses sliding on analytical surfaces and interacting with one another. The motion occurs under the effect of gravity, the reaction force of the surface and basal friction. The interaction force maintains the masses at a fixed distance and lies on the line connecting them. The equations of motion form a system of ordinary differential equations that are solved through a fourth-order Runge–Kutta numerical scheme. In the first paper we considered an approximate method holding when the line joining the masses is almost tangent to the surface at the instant mass positions. In this second paper we provide a general solution. Firstly, we present special cases in which the system has exact solutions. Second, we consider a series of numerical examples where the interest is focused on the trajectories of the masses and on the intensity and changes of the interaction force.