Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system, specifically planar optical waveguides, is coupling. The curr...Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system, specifically planar optical waveguides, is coupling. The current study presents a coupling model for planar optical waveguides and optical fibers. The various effects of the optical properties of the coupling interface were analyzed by the scalar finite difference beam propagation method, including the thickness, with or without the matching refractive index of the interface adhesive. The findings can serve as a guide for planar optical waveguide packaging.展开更多
We report experimental realization of Raman spectra enhancement of copper phthalocyanine, using an on-chip metallic planar waveguide of the sub-millimeter scale. The oscillating ultrahigh order modes excited by the di...We report experimental realization of Raman spectra enhancement of copper phthalocyanine, using an on-chip metallic planar waveguide of the sub-millimeter scale. The oscillating ultrahigh order modes excited by the direct coupling method yield high optical intensity at resonance, which is different from the conventional strategy to create localized "hot spots." The observed excitation efficiency of the Raman signal is significantly enhanced,owing to the high Q factor of the resonant cavity. Furthermore, effective modulation of the Raman intensity is available by adjusting the polymethyl methacrylate(PMMA) thickness in the guiding layer, i.e., by tuning the light–matter interaction length. A large modulation depth is verified through the fact that 10 times variation in the enhancement factor is observed in the experiment as the PMMA thickness varies from 7 to 23 μm.展开更多
Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature ...Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.展开更多
A matrix method used in multilayer stack of dielectric films is applied-to planar dielectric optical waveguides. A simple and applicable method for obtaining characteristic equation is presented.
The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adj...The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.展开更多
A simple solution for a multilayer metallic optical waveguide by transforming it intoan equivalent three-layer slab waveguide is presented. The dispersion relation of the equivalentthree-layer slab waveguide is solved...A simple solution for a multilayer metallic optical waveguide by transforming it intoan equivalent three-layer slab waveguide is presented. The dispersion relation of the equivalentthree-layer slab waveguide is solved by using a simple iterative formula. This method itself isexact and can approach any accuracy desired. Moreover, the numerical results for four-layer andfive-layer structures show that the second-order solution is also accurate enough. It is simple andhas the same form of expressions for TE and TM modes and for different layer structures.展开更多
Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or...Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.展开更多
We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on L...We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).展开更多
TiO2/ ormosil planar waveguide was prepared by sol-gel method at low thermal treatment temperature ( 〈 200 ℃). Scanning electron microscope, FT-IR spectrometer, spectrophotometer, atomic force microscopy, thermal ...TiO2/ ormosil planar waveguide was prepared by sol-gel method at low thermal treatment temperature ( 〈 200 ℃). Scanning electron microscope, FT-IR spectrometer, spectrophotometer, atomic force microscopy, thermal analyzer, and dark m-line spectroscopy were used with the method of scattering-detection to investigate optical and structural properties. High optical quality waveguide film was obtained. The propagation loss of film was 0.569 dB/cm at a wavelength of 632.8 nm.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
A novel design of 100GHz-spaced 16channel arrayed-waveguide grating (AWG) based on silica-on-silicon chip is reported.AWG is achieved by adding a Y-branch to the AWG and arranging the input/output channel in a neat ro...A novel design of 100GHz-spaced 16channel arrayed-waveguide grating (AWG) based on silica-on-silicon chip is reported.AWG is achieved by adding a Y-branch to the AWG and arranging the input/output channel in a neat row,so the whole configuration can be aligned and packaged using only one fiber-array.This configuration can decrease the device’s size,enlarge the minimum radius of curvature,save time on polishing and alignment,and reduce the chip’s fabrication cost.展开更多
Multilayer cladded slab waveguides have been solved by using asymptotic theory once or twice. Based on the solution of a three layer slab waveguide, the wave number of guided modes has been expanded in series of one o...Multilayer cladded slab waveguides have been solved by using asymptotic theory once or twice. Based on the solution of a three layer slab waveguide, the wave number of guided modes has been expanded in series of one or two small parameters. One side cladded slab, two side cladded slab and two parallel cladded slab waveguide system are demonstrated to show how to use this essentially analytic method. Numerical examples have also been given and compared with exact solutions, eved the first or second order solutions are highly accurate.展开更多
The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency.In this paper,by employing the equation governing the nonlinear li...The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency.In this paper,by employing the equation governing the nonlinear light propagations in photorefractive crystals,we study the photonic band-gap structures, Bloch modes,and light transmission properties of optically induced planar waveguide arrays.The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail.Then the influence of the parameters of planar waveguide arrays on the band-gaps structures,Bloch modes,and linear light transmissions is analyzed.It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures.And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes.Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions.Furthermore,the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle.Additionally,with the increase of the intensity of the array writing beams,the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect.展开更多
With the development of manufacturing technology,the propagation loss of the planar waveguide is getting lower and lower,and the shot-noise-limited sensitivity of an HOG will be greatly improved.When the propagation l...With the development of manufacturing technology,the propagation loss of the planar waveguide is getting lower and lower,and the shot-noise-limited sensitivity of an HOG will be greatly improved.When the propagation loss is getting lower,improper coupling-out waveguide in the waveguide coil may lead to non-ignorable bending loss and crosstalk because of the small radius of curvature and X-junction.In this paper,different couplingout waveguides have been designed.After calculation and optimization by the beam propagation method,we found the proper coupling-out waveguide having relatively low propagation loss,which can improve the sensitivity of the HOG.展开更多
Theoretical analysis and numerical results for typical examples are presented for three-layer planar waveguides with nonlinear claddings to find the appropriate structures in which the core electric field can become u...Theoretical analysis and numerical results for typical examples are presented for three-layer planar waveguides with nonlinear claddings to find the appropriate structures in which the core electric field can become uniform at appropriate optical power while the cladding fields decay exponentially . It is shown that there are five kinds of such structures. The electric field profiles are plotted for the five typical examples. We notify that the occurrence of uniform field in a waveguide core may perhaps have prospective applications in waveguide, opto-electronic and photonic devices.展开更多
In recent years, the silica-on-silicon based multimode interference (MMI) optical waveguide is an interesting research topic. It is being advanced various researches on the silica based MMI coupler. This paper repre...In recent years, the silica-on-silicon based multimode interference (MMI) optical waveguide is an interesting research topic. It is being advanced various researches on the silica based MMI coupler. This paper represents the considerations of the optimal design of the silica-on-silicon based MMI optical coupler for better performance. For that, we have illustrated the simulation results on a particular case of the 4x4 silica-on-silicon based MMI coupler. From the simulation results, it is seen that the performance of the MMI coupler depends on multiple width and length combinations of the MMI waveguide. The results also show that the width of the multimode waveguide could not be too small or too large for optimal performance, and at the widths, 100~tm, 120~tm and 130~tm, the performance could be optimized and be almost 0.62 - 0.64 in a given length range. Finally, the results have been compared with the optical coupler presently available in the market and show that the silica-on-silicon based MMI coupler is much more efficient in terms of losses and the performance associated with it and the size of the coupler.展开更多
A novel method for fabricating an athermal AWG is proposed, using a unique apparatus for ITU-T center wavelength adjustment and optical coupling of two cut-parts. UV adhesive or sticky gel is applied into the gap betw...A novel method for fabricating an athermal AWG is proposed, using a unique apparatus for ITU-T center wavelength adjustment and optical coupling of two cut-parts. UV adhesive or sticky gel is applied into the gap between the cut-elements and the alignment base substrate by capillary infiltration. The spectrum profiles are almost the same as those of the original chip state, and no deterioration is observed resulting from athermalization. Flat-top athermal AWG modules of 100 GHz × 40 ch are fabricated. Over a temperature range of-40 to 85 ℃, the center wavelength shift is ±22 pm, and the insertion loss change is less than ±0.11 dB.展开更多
文摘Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system, specifically planar optical waveguides, is coupling. The current study presents a coupling model for planar optical waveguides and optical fibers. The various effects of the optical properties of the coupling interface were analyzed by the scalar finite difference beam propagation method, including the thickness, with or without the matching refractive index of the interface adhesive. The findings can serve as a guide for planar optical waveguide packaging.
基金supported by the Natural Science Foundation of Jiangsu Province(Nos.BK20140246 and BK20160417)the National Natural Science Foundation of China(No.61371057,61601251,11404092,and61701261)+1 种基金the China Postdoctoral Science Foundation Funded Project(No.2016M601586)the Fundamental Research Funds for the Central Universities(No.2017B14914)
文摘We report experimental realization of Raman spectra enhancement of copper phthalocyanine, using an on-chip metallic planar waveguide of the sub-millimeter scale. The oscillating ultrahigh order modes excited by the direct coupling method yield high optical intensity at resonance, which is different from the conventional strategy to create localized "hot spots." The observed excitation efficiency of the Raman signal is significantly enhanced,owing to the high Q factor of the resonant cavity. Furthermore, effective modulation of the Raman intensity is available by adjusting the polymethyl methacrylate(PMMA) thickness in the guiding layer, i.e., by tuning the light–matter interaction length. A large modulation depth is verified through the fact that 10 times variation in the enhancement factor is observed in the experiment as the PMMA thickness varies from 7 to 23 μm.
基金The National Natural Science Foundation of China(No.60977038)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110016)+1 种基金the National Basic Research Program of China(973Program)(No.2011CB302004)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education of China(No.201204)
文摘Based on attenuated total reflection (ATR) and thermo-optic effect, the polymeric thin film planar optical waveguide is used as the temperature sensor, and the factors influencing the sensitivity of the temperature sensor are comprehensively analyzed. Combined with theoretical analysis and experimental investigation, the sensitivity of the temperature sensor is related to the thicknesses of the upper cladding layer, the waveguide layer, the optical loss of the polymer material and the guided wave modes. The results show that the slope value about reflectivity and temperature, which stands for the sensitivity of the polymer thin film temperature sensor, is associated with the waveguide film thickness and the guided wave modes, and the slope value is the highest in the zero reflectance of a certain transverse electric (TE) mode. To improve the sensitivity of the temperature sensor, the sensor's working incident light exterior angle α should be chosen under a certain TE mode with the reflectivity to be zero. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.
文摘A matrix method used in multilayer stack of dielectric films is applied-to planar dielectric optical waveguides. A simple and applicable method for obtaining characteristic equation is presented.
基金Projects(51475479,51075402)supported by the National Natural Science Foundation of ChinaProject(2012AA040406)supported by the National High Technology Research and Development Program of China+2 种基金Project(20110162130004)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(14JJ2010)supported by the Natural Science Foundation of Hunan Province,ChinaProject(GZKF-201401)supported by the Open Project of Stage Key Laboratory of Fluid Power Transmission and Control(Zhejiang University),China
文摘The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.
文摘A simple solution for a multilayer metallic optical waveguide by transforming it intoan equivalent three-layer slab waveguide is presented. The dispersion relation of the equivalentthree-layer slab waveguide is solved by using a simple iterative formula. This method itself isexact and can approach any accuracy desired. Moreover, the numerical results for four-layer andfive-layer structures show that the second-order solution is also accurate enough. It is simple andhas the same form of expressions for TE and TM modes and for different layer structures.
基金supported by the ZTE Industry-University-Institute Fund Project under Grant No.IA20221202011。
文摘Femtosecond laser direct inscription is a technique especially useful for prototyping purposes due to its distinctive advantages such as high fabrication accuracy,true 3D processing flexibility,and no need for mold or photomask.In this paper,we demonstrate the design and fabrication of a planar lightwave circuit(PLC)power splitter encoded with waveguide Bragg gratings(WBG)using a femtosecond laser inscription technique for passive optical network(PON)fault localization application.Both the reflected wavelengths and intervals of WBGs can be conveniently tuned.In the experiment,we succeeded in directly inscribing WBGs in 1×4 PLC splitter chips with a wavelength interval of about 4 nm and an adjustable reflectivity of up to 70% in the C-band.The proposed method is suitable for the prototyping of a PLC splitter encoded with WBG for PON fault localization applications.
基金Project supported by the the Fundamental Research Funds for the Central Universities(Grant No.2023MS163).
文摘We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).
文摘TiO2/ ormosil planar waveguide was prepared by sol-gel method at low thermal treatment temperature ( 〈 200 ℃). Scanning electron microscope, FT-IR spectrometer, spectrophotometer, atomic force microscopy, thermal analyzer, and dark m-line spectroscopy were used with the method of scattering-detection to investigate optical and structural properties. High optical quality waveguide film was obtained. The propagation loss of film was 0.569 dB/cm at a wavelength of 632.8 nm.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
文摘A novel design of 100GHz-spaced 16channel arrayed-waveguide grating (AWG) based on silica-on-silicon chip is reported.AWG is achieved by adding a Y-branch to the AWG and arranging the input/output channel in a neat row,so the whole configuration can be aligned and packaged using only one fiber-array.This configuration can decrease the device’s size,enlarge the minimum radius of curvature,save time on polishing and alignment,and reduce the chip’s fabrication cost.
文摘Multilayer cladded slab waveguides have been solved by using asymptotic theory once or twice. Based on the solution of a three layer slab waveguide, the wave number of guided modes has been expanded in series of one or two small parameters. One side cladded slab, two side cladded slab and two parallel cladded slab waveguide system are demonstrated to show how to use this essentially analytic method. Numerical examples have also been given and compared with exact solutions, eved the first or second order solutions are highly accurate.
基金Supported by the Youth for Northwestern Polytechnical University(NPU)Teachers Scientific and Technological Innovation Foundationthe NPU Foundation for Fundamental Research,and the Doctorate Foundation of NPU(Grant No.CX200514)
文摘The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency.In this paper,by employing the equation governing the nonlinear light propagations in photorefractive crystals,we study the photonic band-gap structures, Bloch modes,and light transmission properties of optically induced planar waveguide arrays.The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail.Then the influence of the parameters of planar waveguide arrays on the band-gaps structures,Bloch modes,and linear light transmissions is analyzed.It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures.And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes.Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions.Furthermore,the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle.Additionally,with the increase of the intensity of the array writing beams,the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect.
基金Project supported by the National Natural Science Foundation of China(Nos.61274066,61504138,61474115)the National Key Research and Development Program of China(No.2016YFA02005003)
文摘With the development of manufacturing technology,the propagation loss of the planar waveguide is getting lower and lower,and the shot-noise-limited sensitivity of an HOG will be greatly improved.When the propagation loss is getting lower,improper coupling-out waveguide in the waveguide coil may lead to non-ignorable bending loss and crosstalk because of the small radius of curvature and X-junction.In this paper,different couplingout waveguides have been designed.After calculation and optimization by the beam propagation method,we found the proper coupling-out waveguide having relatively low propagation loss,which can improve the sensitivity of the HOG.
基金This work was partially supported by the Paper Foundation of Northern Jiaotong University.
文摘Theoretical analysis and numerical results for typical examples are presented for three-layer planar waveguides with nonlinear claddings to find the appropriate structures in which the core electric field can become uniform at appropriate optical power while the cladding fields decay exponentially . It is shown that there are five kinds of such structures. The electric field profiles are plotted for the five typical examples. We notify that the occurrence of uniform field in a waveguide core may perhaps have prospective applications in waveguide, opto-electronic and photonic devices.
文摘In recent years, the silica-on-silicon based multimode interference (MMI) optical waveguide is an interesting research topic. It is being advanced various researches on the silica based MMI coupler. This paper represents the considerations of the optimal design of the silica-on-silicon based MMI optical coupler for better performance. For that, we have illustrated the simulation results on a particular case of the 4x4 silica-on-silicon based MMI coupler. From the simulation results, it is seen that the performance of the MMI coupler depends on multiple width and length combinations of the MMI waveguide. The results also show that the width of the multimode waveguide could not be too small or too large for optimal performance, and at the widths, 100~tm, 120~tm and 130~tm, the performance could be optimized and be almost 0.62 - 0.64 in a given length range. Finally, the results have been compared with the optical coupler presently available in the market and show that the silica-on-silicon based MMI coupler is much more efficient in terms of losses and the performance associated with it and the size of the coupler.
文摘A novel method for fabricating an athermal AWG is proposed, using a unique apparatus for ITU-T center wavelength adjustment and optical coupling of two cut-parts. UV adhesive or sticky gel is applied into the gap between the cut-elements and the alignment base substrate by capillary infiltration. The spectrum profiles are almost the same as those of the original chip state, and no deterioration is observed resulting from athermalization. Flat-top athermal AWG modules of 100 GHz × 40 ch are fabricated. Over a temperature range of-40 to 85 ℃, the center wavelength shift is ±22 pm, and the insertion loss change is less than ±0.11 dB.