A lumped π-type equivalent circuit of planar spiral inductor for CMOS RFIC application is developed by the domain decomposition method for conformal modules (DDM-CM). Closed form expressions of lumped parameters fo...A lumped π-type equivalent circuit of planar spiral inductor for CMOS RFIC application is developed by the domain decomposition method for conformal modules (DDM-CM). Closed form expressions of lumped parameters for a square spiral inductor on a Si-SiO2 substrate are obtained and verified with the previously published experimental results.展开更多
This paper elaborates on the magnetic forces between current carrying planar spiral coils. Direct and concentric rings methods are employed in order to calculate the magnetic force between these coils. The results obt...This paper elaborates on the magnetic forces between current carrying planar spiral coils. Direct and concentric rings methods are employed in order to calculate the magnetic force between these coils. The results obtained by two calculation methods show the efficiency of the replaced rings method in both simplicity and calculation time. Simula-tions using the Finite Element Method (FEM) are carried out to analyze the distribution of the magnetic flux density around the coils. Also, coils with precise size have been constructed and tested. The experimental results as well as the results obtained by FEM are used to validate the accuracy of the calculations.展开更多
A novel low profile multiband rectenna was proposed for harvesting the 2 nd generation(2 G), the 3 rd generation(3 G), the 4 th generation(4 G), wireless local area networks(WLANs) etc., electromagnetic wave energy. T...A novel low profile multiband rectenna was proposed for harvesting the 2 nd generation(2 G), the 3 rd generation(3 G), the 4 th generation(4 G), wireless local area networks(WLANs) etc., electromagnetic wave energy. The proposed rectenna consists of a novel multiband antenna and a rectifier. The multiband antenna includes a radiating element on one side of a single layer dielectric substrate and a feeding spiral balun on the other side of the substrate. A conductive via is connected between the balun and the radiating element. In the radiating element, a deformed dipole structure is connected with an equiangular spiral slot structure and is used to generate a low frequency radiation around 900 MHz. The multiband antenna can work simultaneously at 0.869 GHz^0.948 GHz, 1.432 GHz^2.173 GHz, and 2.273 GHz^2.465 GHz with its peak gains of 7.1 dBi at 903 MHz, 4.1 dBi at 1 800 MHz, 5.2 dBi at 2 430 MHz. The radio frequency to direct current(RF-to-DC) conversion efficiencies of the rectifier are 58%~62% at these three frequencies for an input power of 0 dBm. The overall measurement results validate that the rectenna suits for energy harvesting and exhibits approximate maximum efficiencies of 58% at 0.9 GHz, 56% at 1.8 GHz, and 55% at 2.4 GHz with a low incident power density of 8 μW/cm^2.展开更多
文摘A lumped π-type equivalent circuit of planar spiral inductor for CMOS RFIC application is developed by the domain decomposition method for conformal modules (DDM-CM). Closed form expressions of lumped parameters for a square spiral inductor on a Si-SiO2 substrate are obtained and verified with the previously published experimental results.
文摘This paper elaborates on the magnetic forces between current carrying planar spiral coils. Direct and concentric rings methods are employed in order to calculate the magnetic force between these coils. The results obtained by two calculation methods show the efficiency of the replaced rings method in both simplicity and calculation time. Simula-tions using the Finite Element Method (FEM) are carried out to analyze the distribution of the magnetic flux density around the coils. Also, coils with precise size have been constructed and tested. The experimental results as well as the results obtained by FEM are used to validate the accuracy of the calculations.
基金supported by the Open Fund Project of Engineering Research and Development Center of Nanjing College of Information Technology (KF20160103)the Jiangsu Province Qing Lan Project,the Jiangsu Province 333 Project (BRA2017343)+2 种基金the Jiangsu Province University Student Innovation and Entrepreneurship Training Program (2018)the Nanjing Qixia District Industry-University-Research Cooperation Project (GC201804)the National Natural Science Foundation of China (61671232)
文摘A novel low profile multiband rectenna was proposed for harvesting the 2 nd generation(2 G), the 3 rd generation(3 G), the 4 th generation(4 G), wireless local area networks(WLANs) etc., electromagnetic wave energy. The proposed rectenna consists of a novel multiband antenna and a rectifier. The multiband antenna includes a radiating element on one side of a single layer dielectric substrate and a feeding spiral balun on the other side of the substrate. A conductive via is connected between the balun and the radiating element. In the radiating element, a deformed dipole structure is connected with an equiangular spiral slot structure and is used to generate a low frequency radiation around 900 MHz. The multiband antenna can work simultaneously at 0.869 GHz^0.948 GHz, 1.432 GHz^2.173 GHz, and 2.273 GHz^2.465 GHz with its peak gains of 7.1 dBi at 903 MHz, 4.1 dBi at 1 800 MHz, 5.2 dBi at 2 430 MHz. The radio frequency to direct current(RF-to-DC) conversion efficiencies of the rectifier are 58%~62% at these three frequencies for an input power of 0 dBm. The overall measurement results validate that the rectenna suits for energy harvesting and exhibits approximate maximum efficiencies of 58% at 0.9 GHz, 56% at 1.8 GHz, and 55% at 2.4 GHz with a low incident power density of 8 μW/cm^2.