Planation surfaces (PS) play a major role in reconstruction of the evolutionary history of landforms in local areas. Thus, objective and consistent mapping of planation surfaces from remotely sensed data (e.g., sat...Planation surfaces (PS) play a major role in reconstruction of the evolutionary history of landforms in local areas. Thus, objective and consistent mapping of planation surfaces from remotely sensed data (e.g., satellite imagery, digital elevation models (DEMs)) is paramount for interpreting the geomorphological evolution. Due to the lack of dated sedimentary covers and the difficulties of com-prehensive field work, the number and age of planation surfaces in the Southwest Hubei (湖北) Prov-ince of China are still controversial. In order to map the PS in the study area, four data visualization techniques including ETM+ false color composite, grey-scale DEM, shaded relief model (SRM) and painted relief model (P M) were examined. It is found that the PRM is the most optimal technique for planation surface mapping. The study area was successfully mapped by visual interpretation of a PRM derived from ASTER GDEM. The mapped PS was divided into five classes in terms of elevation ac-cording to previous studies, varying from 1 700-2 000 (PS1), 1 300-1 500 (PS2), 1 000-1 200 (PS3), 800-900 (PS4) to 500-600 (PS5) m. The results were partially compared with the published works. It is revealed that this method of mapping enjoys a higher accuracy and can reduce the time and ef- fort required in the traditional mapping to a large extent. The results also demonstrated that the PRM is an effective tool for geomorphological fea-ture mapping with considerable accuracy. The pre- liminary results can serve to facilitate locating rep-resentative samples for the planation surfaces dating, thus to determine the ages of PS in the study areas.展开更多
Miocene marl is the most widespread Tertiary stratigraphic record in the northern Tibet Plateau, termed the Wudaoliang Group in the Hoh Xil region and the correlative Suonahu Formation in the Qiangtang region. The uni...Miocene marl is the most widespread Tertiary stratigraphic record in the northern Tibet Plateau, termed the Wudaoliang Group in the Hoh Xil region and the correlative Suonahu Formation in the Qiangtang region. The uniform marl overlies red beds of the Eocene-Oligocene Fenghuoshan Group. The Wudaoliang Group is generally 100-400 m thick, but the thickest strata are 700-1300 m, located in the Haidinghu (Maiding Lake) and Tuotuohe (Tuotuo River) regions respectively. Based on observations from eight measured sections and outcrops, the thin-bedded marl, which varies in colour from grey-white to light brown-grey, is explained as a large-scale or serial lacustrine deposit stretching throughout northern Tibet.The Wudaoliang Group commonly crops out on geographic lowland at an average elevation of 4600 m above sea level within the mountain chains, showing concordant summit levels, e.g. the Fenghuoshan and Bairizhajia Mountains. These mountains with a flat ridge are considered to be remains of the palaeo-planation surface. However, the spatial distribution of the Wudaoliang Group is not confined by the current mountain-basin landform configuration. We have observed the Miocene Wudaoliang Group marl exposed on a 5233 m-high mountain peak. The largest difference in height between the current lake level and the mesa crest is 600 m; the maximum dip angle is 25°, but usually below 10°, which is obviously different from the Fenghuoshan Group red beds with moderate to strong structural deformation. The horizon of the Wudaoliang Group thin-bedded marl and its widespread occurrence throughout the northern Tibetan Plateau can only be reasonably inferred to a sedimentary record relevant to the palaeo-planation. Its deposition occurred on primary land floor by erosion at 20 Ma and its bed surface is a typical sign of geomorphic rise and collapse after the erosion.展开更多
Planation surface, a surface that is almost flat, is a kind of low-relief landforms. Planation surface is the consequence of the denudation and planation processes under a tectonic stable condition. The quantitative e...Planation surface, a surface that is almost flat, is a kind of low-relief landforms. Planation surface is the consequence of the denudation and planation processes under a tectonic stable condition. The quantitative expression of the characteristics of planation surface plays a key role in reconstructing and describing the evolutionary process of landforms. In this study, Landform Planation Index(LPI), a new terrain derivative, was proposed to quantify the characteristics of planation surface. The LPIs were calculated based on the summit surfaces formed according to the clustering results of peaks. Ten typical areas in the Ordos Platform located in the central part of the Loess Plateau of China are chosen as the test areas for investigating their planation characteristics with the LPI. The experimental results indicate that the LPI can be effectively used to quantify the characteristics of planation surfaces. In addition, the LPI can be further used to depict the patterns of spatial differentiation in the Ordos Platform. Although the present Ordos Platform area is full of the high-density gullies, its planation characteristics is found to be well preserved. Furthermore, the characteristics of the planation surfaces can also reflect the original morphology of the Ordos Platform before the loess dusts deposition process evolved in this area. The statistical results of the LPI show that there is a gradually increasing tendency along with the increasing of slope gradient of summit surface. It indicates that the characteristics of planation surfaces vary among test areas with different landforms. These findings help to deepen the understanding of planation characteristics of the loess landform and its underlying paleotopography. Results of this study can be also served as an important theoretical reference value for revealing the evolutionary process of loess landform.展开更多
Present granite landform characteristics and distribution are the integrated result of climate, tectonics and lithology. Various types of granite landforms in China signify climate zonality and differential vertical m...Present granite landform characteristics and distribution are the integrated result of climate, tectonics and lithology. Various types of granite landforms in China signify climate zonality and differential vertical movement of earth surface, while published research results on Chinese granite landforms are very rare, especially in international journals. Based on the process analysis of chemical weathering and physical disintegration, four granite landform regions in China are classified according to the present climate regime. On the Tibetan Plateau, the cold and freezing climate induced periglacial landscapes; the northeast region is characterized by physical disintegration and low round mounds are widespread; in the northwest region controlled by arid climate, wind-carved minor landscapes are extremely prominent. The most spectacular granite landscapes in China are presented in southeast as a result of Iongtime chemical weathering under humid and warm conditions, as well as the differential uplift after Neogene. Correlating the weathering crust in southern China, Tibetan Plateau and India, a possible unified planation surface in Neogene is proposed. With corestones as indicators of original weathering front, the differential uplift extent of dissected planation surfaces can be estimated. At least three landforms implying uplift can be identified in southeastern China, with elevations of 300-400 m, 2000 m and 3600 m above the sea level respectively.展开更多
The late Cenozoic geomorphic features and geochronologic data of the Zhingfang River catchment in the Yuntaishan World Geopark are studied. Several quarternary geochronologic methods, including electron spin resonance...The late Cenozoic geomorphic features and geochronologic data of the Zhingfang River catchment in the Yuntaishan World Geopark are studied. Several quarternary geochronologic methods, including electron spin resonance (ESR), optically stimulated luminescence (OSL), thermo-luminescence (TL) and U-series are presented in this paper. The results suggest that there are two planation surfaces, named as the Taihang surface which is a peneplain of Taihang stage formed during Oligocene or Oligocene to early-middle Miocene period, and Tang-hien surface which is a mature wide valley of Tang-hien stage formed during late Miocene-Pliocene or Piiocene-early Pleistocene period and probably ended prior to 2.2-2.6 Ma based on ESR dating. After the Tang-hien stage, the incision and aggradation of the river formed six stream terraces with heights of 3-5 m, 8-12 m, 22-24 m, 28-38 m, 50-62 m and 80-85 m above the river bottom, respectively. The dating results of the alluvium sediments suggest that these terraces were formed during Holocene, 20-23 ka B.P., 110-120 ka B.P., 200-240 ka B.P., 840-1200 ka B.P. or ~450 ka B.P. and 1600-1800 ka B.P. or -1100 ka B.P., respectively. These results indicate that episodic incision of the river, which controls the formation of the scenery in the Yuntaishan World Geopark, was mainly influenced by the periodic dry-wet climate change during late Cenozoic mountain uplift.展开更多
The karst landforms distributed on the Qinghai-Xizang (Tibet) Plateau can be genetically classed with the Tertiary underground karst, which were gradually exhumed to the surface with the uplift of the plateau during Q...The karst landforms distributed on the Qinghai-Xizang (Tibet) Plateau can be genetically classed with the Tertiary underground karst, which were gradually exhumed to the surface with the uplift of the plateau during Quaternary period. The relative deposits of the Tertiary palaeokarst processes, such as the residuum and speleothem, were discovered recently in the southern and southeastern fringe areas of the plateau, where has geological-currently been disintegrated by the headward erosion processes of the modern river systems. The major chemical components of the clay portion of the residuum consist mainly of SiO2, Al2O3 and Fe2O3. The clay minerals composition of the clay portion belongs to illite-kaolinite pattern for most of the residuum samples, and kaolinite-illite pattern for a few of the samples. It can be judged from the silicic acid index and the clay minerals composition that the formation of the residuum of the Plateau was in its initial phase. However, such a lower chemical weathering index only reflected the weathering degree in the bottom or lower parts of the lateritic weathering crust. The relatively intensive chemical weathering processes of the surface layers of the lateritic weathering crust could be logically speculated. The surface feature textures of quartz grains in the residuum were formed mainly by the chemical erosion, which revealed a long-term humid-tropical environment when the residuum and the palaeokarst formed.展开更多
The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the...The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the Tibetan Plateau and the evolution of East Asia monsoon system. In this paper, a detailed magnetostratigraphy of a loess-red clay section (107°13′E, 35°02′N) from the central Loess Plateau is reported. The loess-red clay sequence is composed of 175 m Quaternary loess-paleosol sequence and 128 m Neogene red clay sediments. Based on the correlation with the standard geomagnetic polarity time scale, the paleomagnetic results indicate that the age of Chaona red clay sequence extends to 08.1 Ma, which is the older red clay deposition in the central Chinese Loess Plateau. The commencement of red clay at -8.1 Ma may imply that the Ordos planation surface was broken by the movement of the Haiyuan-Liupanshan Faults, which was related to the uplift of the Tibetan Plateau induced by the collision of India Plate and Eurasian Plate. And the western part adjacent to the Tibetan Plateau was uplifted to form the embryo of the Liupan Shan (Mts.) and the eastern part was down-faulted to receive red clay deposition. We link this faulting to an initial uplift of the Tibetan Plateau. The undulating nature of the broken Ordos planation surface may explain the chronological differences and depth discrepancies among various cross-sections of red clay.展开更多
Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a pl...Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since -3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an "infant" stage of the geomorphological cycle. However, these drainages were not formed until 1.7-1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an "old stage" landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.展开更多
基金supported by the National Basic Research Program of China (No. 2011CB710600)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGL100211)the National Natural Science Foundation of China (No. 91014002)
文摘Planation surfaces (PS) play a major role in reconstruction of the evolutionary history of landforms in local areas. Thus, objective and consistent mapping of planation surfaces from remotely sensed data (e.g., satellite imagery, digital elevation models (DEMs)) is paramount for interpreting the geomorphological evolution. Due to the lack of dated sedimentary covers and the difficulties of com-prehensive field work, the number and age of planation surfaces in the Southwest Hubei (湖北) Prov-ince of China are still controversial. In order to map the PS in the study area, four data visualization techniques including ETM+ false color composite, grey-scale DEM, shaded relief model (SRM) and painted relief model (P M) were examined. It is found that the PRM is the most optimal technique for planation surface mapping. The study area was successfully mapped by visual interpretation of a PRM derived from ASTER GDEM. The mapped PS was divided into five classes in terms of elevation ac-cording to previous studies, varying from 1 700-2 000 (PS1), 1 300-1 500 (PS2), 1 000-1 200 (PS3), 800-900 (PS4) to 500-600 (PS5) m. The results were partially compared with the published works. It is revealed that this method of mapping enjoys a higher accuracy and can reduce the time and ef- fort required in the traditional mapping to a large extent. The results also demonstrated that the PRM is an effective tool for geomorphological fea-ture mapping with considerable accuracy. The pre- liminary results can serve to facilitate locating rep-resentative samples for the planation surfaces dating, thus to determine the ages of PS in the study areas.
基金under the auspices of the National Key Project for Basic Researches on the Tibet Plateau(G1998040800)
文摘Miocene marl is the most widespread Tertiary stratigraphic record in the northern Tibet Plateau, termed the Wudaoliang Group in the Hoh Xil region and the correlative Suonahu Formation in the Qiangtang region. The uniform marl overlies red beds of the Eocene-Oligocene Fenghuoshan Group. The Wudaoliang Group is generally 100-400 m thick, but the thickest strata are 700-1300 m, located in the Haidinghu (Maiding Lake) and Tuotuohe (Tuotuo River) regions respectively. Based on observations from eight measured sections and outcrops, the thin-bedded marl, which varies in colour from grey-white to light brown-grey, is explained as a large-scale or serial lacustrine deposit stretching throughout northern Tibet.The Wudaoliang Group commonly crops out on geographic lowland at an average elevation of 4600 m above sea level within the mountain chains, showing concordant summit levels, e.g. the Fenghuoshan and Bairizhajia Mountains. These mountains with a flat ridge are considered to be remains of the palaeo-planation surface. However, the spatial distribution of the Wudaoliang Group is not confined by the current mountain-basin landform configuration. We have observed the Miocene Wudaoliang Group marl exposed on a 5233 m-high mountain peak. The largest difference in height between the current lake level and the mesa crest is 600 m; the maximum dip angle is 25°, but usually below 10°, which is obviously different from the Fenghuoshan Group red beds with moderate to strong structural deformation. The horizon of the Wudaoliang Group thin-bedded marl and its widespread occurrence throughout the northern Tibetan Plateau can only be reasonably inferred to a sedimentary record relevant to the palaeo-planation. Its deposition occurred on primary land floor by erosion at 20 Ma and its bed surface is a typical sign of geomorphic rise and collapse after the erosion.
基金Under the auspices of National Natural Science Foundation of China(No.41201464,41471316)Priority Academic Program Development of Jiangsu Higher Education Institutions(No.164320H101)
文摘Planation surface, a surface that is almost flat, is a kind of low-relief landforms. Planation surface is the consequence of the denudation and planation processes under a tectonic stable condition. The quantitative expression of the characteristics of planation surface plays a key role in reconstructing and describing the evolutionary process of landforms. In this study, Landform Planation Index(LPI), a new terrain derivative, was proposed to quantify the characteristics of planation surface. The LPIs were calculated based on the summit surfaces formed according to the clustering results of peaks. Ten typical areas in the Ordos Platform located in the central part of the Loess Plateau of China are chosen as the test areas for investigating their planation characteristics with the LPI. The experimental results indicate that the LPI can be effectively used to quantify the characteristics of planation surfaces. In addition, the LPI can be further used to depict the patterns of spatial differentiation in the Ordos Platform. Although the present Ordos Platform area is full of the high-density gullies, its planation characteristics is found to be well preserved. Furthermore, the characteristics of the planation surfaces can also reflect the original morphology of the Ordos Platform before the loess dusts deposition process evolved in this area. The statistical results of the LPI show that there is a gradually increasing tendency along with the increasing of slope gradient of summit surface. It indicates that the characteristics of planation surfaces vary among test areas with different landforms. These findings help to deepen the understanding of planation characteristics of the loess landform and its underlying paleotopography. Results of this study can be also served as an important theoretical reference value for revealing the evolutionary process of loess landform.
基金National Natural Science Foundation of China, No.40701017
文摘Present granite landform characteristics and distribution are the integrated result of climate, tectonics and lithology. Various types of granite landforms in China signify climate zonality and differential vertical movement of earth surface, while published research results on Chinese granite landforms are very rare, especially in international journals. Based on the process analysis of chemical weathering and physical disintegration, four granite landform regions in China are classified according to the present climate regime. On the Tibetan Plateau, the cold and freezing climate induced periglacial landscapes; the northeast region is characterized by physical disintegration and low round mounds are widespread; in the northwest region controlled by arid climate, wind-carved minor landscapes are extremely prominent. The most spectacular granite landscapes in China are presented in southeast as a result of Iongtime chemical weathering under humid and warm conditions, as well as the differential uplift after Neogene. Correlating the weathering crust in southern China, Tibetan Plateau and India, a possible unified planation surface in Neogene is proposed. With corestones as indicators of original weathering front, the differential uplift extent of dissected planation surfaces can be estimated. At least three landforms implying uplift can be identified in southeastern China, with elevations of 300-400 m, 2000 m and 3600 m above the sea level respectively.
基金the work of "Study of the geo-scientific settings of geo-tourist landscapes in Yuntaishan World Geopark",and supported by the Department of International Cooperation of Ministry of Science and Technology of China. (Grant No. 2006DFA21320)the Science Foundation of institute of geomechanics, CAGS (Grant No. DZLXJK200706) the National Natural Science Foundation of China (Grant No. 40501006)
文摘The late Cenozoic geomorphic features and geochronologic data of the Zhingfang River catchment in the Yuntaishan World Geopark are studied. Several quarternary geochronologic methods, including electron spin resonance (ESR), optically stimulated luminescence (OSL), thermo-luminescence (TL) and U-series are presented in this paper. The results suggest that there are two planation surfaces, named as the Taihang surface which is a peneplain of Taihang stage formed during Oligocene or Oligocene to early-middle Miocene period, and Tang-hien surface which is a mature wide valley of Tang-hien stage formed during late Miocene-Pliocene or Piiocene-early Pleistocene period and probably ended prior to 2.2-2.6 Ma based on ESR dating. After the Tang-hien stage, the incision and aggradation of the river formed six stream terraces with heights of 3-5 m, 8-12 m, 22-24 m, 28-38 m, 50-62 m and 80-85 m above the river bottom, respectively. The dating results of the alluvium sediments suggest that these terraces were formed during Holocene, 20-23 ka B.P., 110-120 ka B.P., 200-240 ka B.P., 840-1200 ka B.P. or ~450 ka B.P. and 1600-1800 ka B.P. or -1100 ka B.P., respectively. These results indicate that episodic incision of the river, which controls the formation of the scenery in the Yuntaishan World Geopark, was mainly influenced by the periodic dry-wet climate change during late Cenozoic mountain uplift.
基金National Natural Science Foundation of China No. 49901002 and No. 49371011
文摘The karst landforms distributed on the Qinghai-Xizang (Tibet) Plateau can be genetically classed with the Tertiary underground karst, which were gradually exhumed to the surface with the uplift of the plateau during Quaternary period. The relative deposits of the Tertiary palaeokarst processes, such as the residuum and speleothem, were discovered recently in the southern and southeastern fringe areas of the plateau, where has geological-currently been disintegrated by the headward erosion processes of the modern river systems. The major chemical components of the clay portion of the residuum consist mainly of SiO2, Al2O3 and Fe2O3. The clay minerals composition of the clay portion belongs to illite-kaolinite pattern for most of the residuum samples, and kaolinite-illite pattern for a few of the samples. It can be judged from the silicic acid index and the clay minerals composition that the formation of the residuum of the Plateau was in its initial phase. However, such a lower chemical weathering index only reflected the weathering degree in the bottom or lower parts of the lateritic weathering crust. The relatively intensive chemical weathering processes of the surface layers of the lateritic weathering crust could be logically speculated. The surface feature textures of quartz grains in the residuum were formed mainly by the chemical erosion, which revealed a long-term humid-tropical environment when the residuum and the palaeokarst formed.
基金supported by the National Natural Science Foundation of China(NO:40202019,90102017,40121303)National Basic Research Program of China(2004CB720202)China Postdoctoral Fund
文摘The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the Tibetan Plateau and the evolution of East Asia monsoon system. In this paper, a detailed magnetostratigraphy of a loess-red clay section (107°13′E, 35°02′N) from the central Loess Plateau is reported. The loess-red clay sequence is composed of 175 m Quaternary loess-paleosol sequence and 128 m Neogene red clay sediments. Based on the correlation with the standard geomagnetic polarity time scale, the paleomagnetic results indicate that the age of Chaona red clay sequence extends to 08.1 Ma, which is the older red clay deposition in the central Chinese Loess Plateau. The commencement of red clay at -8.1 Ma may imply that the Ordos planation surface was broken by the movement of the Haiyuan-Liupanshan Faults, which was related to the uplift of the Tibetan Plateau induced by the collision of India Plate and Eurasian Plate. And the western part adjacent to the Tibetan Plateau was uplifted to form the embryo of the Liupan Shan (Mts.) and the eastern part was down-faulted to receive red clay deposition. We link this faulting to an initial uplift of the Tibetan Plateau. The undulating nature of the broken Ordos planation surface may explain the chronological differences and depth discrepancies among various cross-sections of red clay.
基金supported by the National Natural Science Foundation of China(Grant Nos.41330745,41171014&41271017)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Thirty-five years ago, the idea of a young Qinghai-Tibetan Plateau was proposed based on a comprehensive investigation on the Qinghai-Tibetan Plateau. This hypothesis suggested that the plateau began to rise from a planation surface (relict surface) that was less than 1000 m high formed during the Miocene to Pliocene. The fast uplift, i.e., the Qingzang Movement, began since -3.6 Ma, evidenced by massive molasse deposits around the plateau margin and the synchronous occurrence of faulted basins within the plateau. However, later studies challenged this idea and suggested earlier (8, 14 or 35 Ma) formation of the huge plateau topography. Here we reevaluate the Qingzang Movement on the basis of our previous results and in light of new studies in the recent decades. The plateau margin has been subjected to intensive incision by very large drainages and shows the landscape characteristics of an "infant" stage of the geomorphological cycle. However, these drainages were not formed until 1.7-1.9 Ma; headwater erosion has not yet reached the hinterland of the plateau, so the interior of Tibet is free of significant erosion despite its lofty elevation, and remains an "old stage" landform. If the mean erosion rate is equivalent to the sum of clastic and soluble discharges of the modern rivers draining the Tibetan Plateau, it should have been worn down to a lowland within 8.6 Ma, ignoring tectonic uplift and isostasy. The massive conglomerate around the plateau margin began to deposit at about 3.6 Ma, indicating an increased relief after that time. Furthermore, the Hipparion fauna sites were widely distributed, and elephants, giraffes, and rhinos were abundant in the Qaidam Basin until the early Pliocene. Cenozoic climate change alone is not able to account for the dense occurrence of Hipparion fauna, unless the paleo-elevation of Tibet was lowered. The rise of Tibet since the Qingzang Movement has had a great influence on the Asian interior aridification.