The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so t...The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.展开更多
In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residu...In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.展开更多
A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance a...A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.展开更多
Plane elasticity theory of one-dimensional hexagonal quasicrystals with point group 6 is proposed and established. As an application of this theory, one typical example of dislocation problem in the quasicrystals is i...Plane elasticity theory of one-dimensional hexagonal quasicrystals with point group 6 is proposed and established. As an application of this theory, one typical example of dislocation problem in the quasicrystals is investigated and its exact analytic solution is presented. The result obtained indicates that the stress components of (elastic) fields of a straight dislocation in the quasicrystals still first order singularity, which is the same as the (general crystals,) but are related with the Burgers vector of phason fields, which is different from the general (crystals.)展开更多
In this paper,the results of spectral description and invertibility of upper triangle infinite-dimensionalHamiltonian operators with a diagonal domain are given.By the above results,it is proved that the infinite-dime...In this paper,the results of spectral description and invertibility of upper triangle infinite-dimensionalHamiltonian operators with a diagonal domain are given.By the above results,it is proved that the infinite-dimensionalHamiltonian operator associated with plane elasticity equations without the body force is invertible,and the spectrumof which is non-empty and is a subset of R.展开更多
In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In compar...In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In comparison with ref. [1], the general solutions of this paper contain more arbitrary constants. Thus they may satisfy more boundary conditions.展开更多
The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement a...The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement and stress in a rectangular region.The completeness of the eigenfunctions is then proved,providing the feasibility of using separation of variables to solve the problems.A general solution is obtained with the symplectic eigenfunction expansion theorem.展开更多
Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are va...Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are valid in the conventional way, non-local plane elasticity problems are solved with the help of biharmonic functions. Then, the results are transferred into the initial plane.Applications are presented to homogeneous and the fractional beam bending problem.展开更多
In this paper the method of reciprocal theorem is extended to find solutions of plane problems of elasticity of the rectangular plates with various edge conditions.First we give the basic solution of the plane problem...In this paper the method of reciprocal theorem is extended to find solutions of plane problems of elasticity of the rectangular plates with various edge conditions.First we give the basic solution of the plane problem of the rectangular plate with four edges built-in as the basic system and then find displacement expressions of the actual system by using the reciprocal theorem between the basic system and actual system with various edge conditions.When only displacement edge conditions exist, obtaining displacement expressions by means of the method of reciprocal theorem is actual. But in other conditions, when static force edge conditions or mixed ones exist, the obtained displacements are admissible. In order to find actual displacement, the minimum potential energy theorem must be applied.Calculations show that the method of reciprocal theorem is a simple, convenient and general one for the solution of plane problems of elasticity of the rectangular plates with various edge conditions. Evidently, it is a new method.展开更多
A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions....A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions.Fundamental solution was prepared for solving these types of problems with boundary element method.展开更多
In this paper, the problem of the periodic welding of an anisotropic elastic half_plane and a strip with different materials is studied. By means of the complex variable method for plane elasticity and the theory of b...In this paper, the problem of the periodic welding of an anisotropic elastic half_plane and a strip with different materials is studied. By means of the complex variable method for plane elasticity and the theory of boundary value problems for analytic function, the stress distribution is given in closed forms.展开更多
In this paper, the welding problem of two half-planes with anisotropic media is considered. By means of the complex variable method, the stress distribution is given in closed forms.
Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cra...Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cracks. This problem was considered by Cai [Engineering Fracture Mechanics 46(1), 133-142 (1993)]. However, the previous method is imperfect. Therefore, the results are incorrect. Here, we revise the method and give a correct solution.展开更多
After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress func...After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.展开更多
By bianalytic functions, the boundary integral formula of the stress function for the elastic problem in a circle plane is developed. But this integral formula includes a strongly singular integral and can not be dire...By bianalytic functions, the boundary integral formula of the stress function for the elastic problem in a circle plane is developed. But this integral formula includes a strongly singular integral and can not be directly calculated. After the stress function is expounded to Fourier series, making use of some formulas in generalized functions to the convolutions, the boundary integral formula which does not include strongly singular integral is derived further. Then the stress function can be got simply by the integration of the values of the stress function and its derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function for the elastic problem is convenient.展开更多
The generalized 2D problem of icosahedral quasicrystals containing an elliptic hole is considered by using the ex- tended Stroh formalism. The closed-form solutions for the displacements and stresses are obtained unde...The generalized 2D problem of icosahedral quasicrystals containing an elliptic hole is considered by using the ex- tended Stroh formalism. The closed-form solutions for the displacements and stresses are obtained under general loading conditions. The solution of the Griffith crack problem as a special case of the results is also observed. The stress intensity factor and strain energy release rate are given. The effect of the phonon-phason coupling elastic constant on the mechanical behavior is also discussed.展开更多
The stress potential function theory for the plane elasticity of octagonal quasicrystals is developed. By introducing stress functions, a large number of basic equations involving the elasticity of octagonal quasicrys...The stress potential function theory for the plane elasticity of octagonal quasicrystals is developed. By introducing stress functions, a large number of basic equations involving the elasticity of octagonal quasicrystals are reduced to a single partial differential equation. Furthermore, we develop the complex variable function method (Lekhnitskii method) for anisotropic elasticity theory to that for quasicrystals. With the help of conformal transformation, an exact solution for the elliptic hole of quasicrystals is presented. The solution of the Griffith crack problem, as a special case of the results, is obtained. As a consequence, the phonon stress intensity factor is derived analytically.展开更多
Based on the stress potential and complex variable function method, this paper makes an elastic analysis of an elliptic notch subjected to uniform shear stress at infinity in quasicrystals with point group 10. With th...Based on the stress potential and complex variable function method, this paper makes an elastic analysis of an elliptic notch subjected to uniform shear stress at infinity in quasicrystals with point group 10. With the aid of conformal transformation, an exact solution for the elliptic notch of the quasicrystals is obtained. The solution of the mode II Griffith crack as a special case is constructed. The stress intensity factor and energy release rate have been also obtained as a direct result of the crack solution.展开更多
The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,w...The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,which assumes that the upper and lower media of a horizontal interface are single-phase media.Limited by this assumption,AVO analysis has limited prediction and identification accuracy for complex porous reservoirs.In view of this,the first-order approximate analytical expressions of oblique elastic wave at an interface of porous media are derived.Firstly,the incident and scattering characteristics of various waves at the interface of porous media are analyzed,and the displacement vectors generated by these elastic waves are described by exponential function.Secondly,the kinematic and dynamic boundary conditions at the interface of porous media are discussed.Thirdly,by substituting the displacement vectors of incident and scattered waves into boundary conditions,the exact analytical equation is derived.Then,considering the symmetry of scattering matrix in the equation,the exact analytical expressions of each scattered wave are obtained.Furthermore,under the assumptions of small incident angle,weak elasticity at an interface of porous media,and ignoring the second-and higherorder terms,the first-order approximate analytical expressions are derived.Establishing a model of sandstone porous media with different porosity in upper and lower media,the correctness of the approximate analytical expressions is verified,and the elastic wave response characteristics of lithology and pore fluids are analyzed.展开更多
In this paper, we discuss an adaptive hybrid stress finite element method on quadri- lateral meshes for linear elasticity problems. To deal with hanging nodes arising in the adaptive mesh refinement, we propose new tr...In this paper, we discuss an adaptive hybrid stress finite element method on quadri- lateral meshes for linear elasticity problems. To deal with hanging nodes arising in the adaptive mesh refinement, we propose new transition types of hybrid stress quadrilateral elements with 5 to 7 nodes. In particular, we derive a priori error estimation for the 5- node transition hybrid stress element to show that it is free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the Lam~ constant A. We introduce~ for quadrilateral meshes, refinement/coarsening algorithms, which do not require storing the refinement tree explicitly, and give an adaptive algorithm. Finally, we provide some numerical results.展开更多
文摘The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.
基金supported by the National Natural Science Foundation of China under Grant No.10562002the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002+1 种基金the Natural Science Foundation of Inner Mongolia under Grant No.200508010103the Inner Mongolia University Scientific Research Starting Foundation for Talented Scholars under Grant No.207066
文摘In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.
基金supported by the National Natural Science Foundation of China(No.51420105013)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(No.SKLGDUEK1713)the Fundamental Research Funds for the Central Universities(Nos.106112017CDJXY200003 and 106112017CDJPT200001)
文摘A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.
文摘Plane elasticity theory of one-dimensional hexagonal quasicrystals with point group 6 is proposed and established. As an application of this theory, one typical example of dislocation problem in the quasicrystals is investigated and its exact analytic solution is presented. The result obtained indicates that the stress components of (elastic) fields of a straight dislocation in the quasicrystals still first order singularity, which is the same as the (general crystals,) but are related with the Burgers vector of phason fields, which is different from the general (crystals.)
基金the National Natural Science Foundation of China under Grant No.10562002the Natural Science Foundation of Inner Mongolia under Grant No.200508010103
文摘In this paper,the results of spectral description and invertibility of upper triangle infinite-dimensionalHamiltonian operators with a diagonal domain are given.By the above results,it is proved that the infinite-dimensionalHamiltonian operator associated with plane elasticity equations without the body force is invertible,and the spectrumof which is non-empty and is a subset of R.
文摘In this paper, the author obtains the more general displacement solutions for the isotropic plane elasticity problems. The general solution obtained in ref. [ 1 ] is merely the particular case of this paper, In comparison with ref. [1], the general solutions of this paper contain more arbitrary constants. Thus they may satisfy more boundary conditions.
基金supported by the National Natural Science Foundation of China(No.10962004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20070126002)the Natural Science Foundation of Inner Mongolia of China(No.20080404MS0104)
文摘The eigenvalue problem of the Hamiltonian operator associated with plane elasticity problems is investigated.The eigenfunctions of the operator are directly solved with mixed boundary conditions for the displacement and stress in a rectangular region.The completeness of the eigenfunctions is then proved,providing the feasibility of using separation of variables to solve the problems.A general solution is obtained with the symplectic eigenfunction expansion theorem.
文摘Non-local plane elasticity problems are discussed in the context of Λ-fractional linear elasticity theory. Adapting the Λ-fractional derivative along with the Λ-fractional space, where geometry and mechanics are valid in the conventional way, non-local plane elasticity problems are solved with the help of biharmonic functions. Then, the results are transferred into the initial plane.Applications are presented to homogeneous and the fractional beam bending problem.
文摘In this paper the method of reciprocal theorem is extended to find solutions of plane problems of elasticity of the rectangular plates with various edge conditions.First we give the basic solution of the plane problem of the rectangular plate with four edges built-in as the basic system and then find displacement expressions of the actual system by using the reciprocal theorem between the basic system and actual system with various edge conditions.When only displacement edge conditions exist, obtaining displacement expressions by means of the method of reciprocal theorem is actual. But in other conditions, when static force edge conditions or mixed ones exist, the obtained displacements are admissible. In order to find actual displacement, the minimum potential energy theorem must be applied.Calculations show that the method of reciprocal theorem is a simple, convenient and general one for the solution of plane problems of elasticity of the rectangular plates with various edge conditions. Evidently, it is a new method.
文摘A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions.Fundamental solution was prepared for solving these types of problems with boundary element method.
文摘In this paper, the problem of the periodic welding of an anisotropic elastic half_plane and a strip with different materials is studied. By means of the complex variable method for plane elasticity and the theory of boundary value problems for analytic function, the stress distribution is given in closed forms.
基金The Projects Supported by the National Natural Science Foundation of China
文摘In this paper, the welding problem of two half-planes with anisotropic media is considered. By means of the complex variable method, the stress distribution is given in closed forms.
文摘Using the method of complex functions, we discuss the first fundamental problems of an anisotropic infinite elastic plane weakened by periodic collinear cracks and with periodic boundary loads on both sides of the cracks. This problem was considered by Cai [Engineering Fracture Mechanics 46(1), 133-142 (1993)]. However, the previous method is imperfect. Therefore, the results are incorrect. Here, we revise the method and give a correct solution.
文摘After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.
文摘By bianalytic functions, the boundary integral formula of the stress function for the elastic problem in a circle plane is developed. But this integral formula includes a strongly singular integral and can not be directly calculated. After the stress function is expounded to Fourier series, making use of some formulas in generalized functions to the convolutions, the boundary integral formula which does not include strongly singular integral is derived further. Then the stress function can be got simply by the integration of the values of the stress function and its derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function for the elastic problem is convenient.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11072104,1272053,and 11262017)the Key Project of Chinese Ministry of Education(Grant No.212029)+3 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2013MS0114)the Natural Science Foundation of Inner Mongolia Department of Public Education,China(Grant No.NJZZ13037)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region,China(Grant No.NJYT-13-B07)the Program of Higher-level Talents of Inner Mongolia University,China(Grant No.125125)
文摘The generalized 2D problem of icosahedral quasicrystals containing an elliptic hole is considered by using the ex- tended Stroh formalism. The closed-form solutions for the displacements and stresses are obtained under general loading conditions. The solution of the Griffith crack problem as a special case of the results is also observed. The stress intensity factor and strain energy release rate are given. The effect of the phonon-phason coupling elastic constant on the mechanical behavior is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11026175, 11262017, and 10761005)the Key Project of Ministry of Education of China (Grant No. 212029)+1 种基金the Natural Science Foundation of Inner Mongolia, China (Grant Nos. 2009MS0102 and 2009BS0104)the Natural Science Foundation of Inner Mongolia Department of Public Education, China (Grant Nos. NJzy08024 and NJ10047)
文摘The stress potential function theory for the plane elasticity of octagonal quasicrystals is developed. By introducing stress functions, a large number of basic equations involving the elasticity of octagonal quasicrystals are reduced to a single partial differential equation. Furthermore, we develop the complex variable function method (Lekhnitskii method) for anisotropic elasticity theory to that for quasicrystals. With the help of conformal transformation, an exact solution for the elliptic hole of quasicrystals is presented. The solution of the Griffith crack problem, as a special case of the results, is obtained. As a consequence, the phonon stress intensity factor is derived analytically.
基金Project supported by the National Natural Science Foundation of China(Grant No.10761005)the Natural Science Foundation of Inner Mongolia of China(Grant Nos.2009MS0102,2009BS0101 and 2009BS0104)+1 种基金the Natural Science Foundation of Inner Mongolia Normal University(Grant No.QN07034)the Natural Science Foundation of Inner Mongolia Department of Public Education(Grant No.NJzy08024)
文摘Based on the stress potential and complex variable function method, this paper makes an elastic analysis of an elliptic notch subjected to uniform shear stress at infinity in quasicrystals with point group 10. With the aid of conformal transformation, an exact solution for the elliptic notch of the quasicrystals is obtained. The solution of the mode II Griffith crack as a special case is constructed. The stress intensity factor and energy release rate have been also obtained as a direct result of the crack solution.
基金financially supported by the National Natural Science Foundation of China(Grant No.42104131)the Natural Science Foundation of Sichuan Province of China(Grant No.2022NSFSC1140)Open Fund(PLC20211101)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation
文摘The analysis technology of Amplitude Variation with Offset(AVO)is one of the important methods for oil and gas reservoir prediction.Zoeppritz equation and its approximations are the theoretical basis of AVO analysis,which assumes that the upper and lower media of a horizontal interface are single-phase media.Limited by this assumption,AVO analysis has limited prediction and identification accuracy for complex porous reservoirs.In view of this,the first-order approximate analytical expressions of oblique elastic wave at an interface of porous media are derived.Firstly,the incident and scattering characteristics of various waves at the interface of porous media are analyzed,and the displacement vectors generated by these elastic waves are described by exponential function.Secondly,the kinematic and dynamic boundary conditions at the interface of porous media are discussed.Thirdly,by substituting the displacement vectors of incident and scattered waves into boundary conditions,the exact analytical equation is derived.Then,considering the symmetry of scattering matrix in the equation,the exact analytical expressions of each scattered wave are obtained.Furthermore,under the assumptions of small incident angle,weak elasticity at an interface of porous media,and ignoring the second-and higherorder terms,the first-order approximate analytical expressions are derived.Establishing a model of sandstone porous media with different porosity in upper and lower media,the correctness of the approximate analytical expressions is verified,and the elastic wave response characteristics of lithology and pore fluids are analyzed.
文摘In this paper, we discuss an adaptive hybrid stress finite element method on quadri- lateral meshes for linear elasticity problems. To deal with hanging nodes arising in the adaptive mesh refinement, we propose new transition types of hybrid stress quadrilateral elements with 5 to 7 nodes. In particular, we derive a priori error estimation for the 5- node transition hybrid stress element to show that it is free from Poisson-locking, in the sense that the error bound in the a priori estimate is independent of the Lam~ constant A. We introduce~ for quadrilateral meshes, refinement/coarsening algorithms, which do not require storing the refinement tree explicitly, and give an adaptive algorithm. Finally, we provide some numerical results.