A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The resu...A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.展开更多
Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source.The use of a plane jet is proposed to reduce this flow-induced noise.Tandem rods with different ...Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source.The use of a plane jet is proposed to reduce this flow-induced noise.Tandem rods with different gap widths were utilized as the test body.Both acoustic and aerodynamic tests were conducted in order to validate this technique.Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet.However,when the plane jet was turned on,in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor.Moreover,aerodynamic tests fundamentally studied explanations for the noise reduction.Specifically,not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet.Consequently,the vortex shedding induced by the rear rod was reduced,which was confirmed by the speed,Reynolds stress as well as the velocity fluctuation spectral measured in its wake.This study confirmed the potential use of a plane jet towards landing gear noise reduction.展开更多
Oscillation phenomena in far field region of plane jets are studied by lattice Boltzmann method over a range of Reynolds numbers (Re) from 16 to 65. Numerical results show that the instantaneous centerline velocitie...Oscillation phenomena in far field region of plane jets are studied by lattice Boltzmann method over a range of Reynolds numbers (Re) from 16 to 65. Numerical results show that the instantaneous centerline velocities show periodic oscillation behavior in far field region when Re〉38. In contrast, the periodic behavior is invisible in corresponding flow field when Re≤38. For the cases of Re≤38, the exchange of momentum due to straining mo- tion gradually dominates the downstream flow filed, which qualitatively suggests the possibility of iet instability.展开更多
This paper analyses the downstream developments of the mean and the turbulent velocity fields of a plane jet. Based on the conservation of mass and the conservation of momentum, the mean-velocity half width (reflecti...This paper analyses the downstream developments of the mean and the turbulent velocity fields of a plane jet. Based on the conservation of mass and the conservation of momentum, the mean-velocity half width (reflecting the jet spread rate) and the relative mass flow rate (jet entrainment) are related to the decay rate of the centreline mean velocity. These relations are not subject to self-preservation. Both analytical and experimental results suggest that the jet spread rate (K1) and the entrainment rate (K3) (and thus the decay rate K2) can be well estimated from the centreline velocity, i.e., K1 ≈ 0.6K2 and K3 ∝K2. The effect of initial mean velocity and RMS velocity profiles on the downstream mean velocity field appears to be embodied in the constants K1 K2 and K3. The analytical relationship for the self-preserving Reynolds shear stress, obtained for the first time, works well.展开更多
Gas solid two-phase turbulent plane jet is applied to many natural s it uations and in engineering systems. To predict the particle dispersion in the ga s jet is of great importance in industrial applications and in ...Gas solid two-phase turbulent plane jet is applied to many natural s it uations and in engineering systems. To predict the particle dispersion in the ga s jet is of great importance in industrial applications and in the designing of engineering systems. A large eddy simulation of the two-phase plane jet was con d ucted to investigate the particle dispersion patterns. The particles with Stokes numbers equal to 0 0028, 0 3, 2 5, 28 (corresponding to particle diameter 1 μm , 10 μm, 30 μm, 100 μm, respectively) in \%Re\%=11 300 gas flow were studied. The simulation results of gas phase motion agreed well with previous experimental re sults. And the simulation results of the solid particles motion showed that part icles with different Stokes number have different spatial dispersion; and that p articles with intermediate Stokes number have the largest dispersion ratio.展开更多
A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenome...A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenomenon was verified simultaneously in this paper by laser Doppler velocimeter measurement and numerical analyses with volume of fluid approach coupled with a large eddy simulation turbulent model.The general agreement of mean velocities between numerical predictions and experimental results in self-similar region is good for two cases:Reynolds numbers 2090 and 2970,which correspond to the stable impinging jet and flapping jet.Results show that the flapping jet is a new flow pattern for submerged turbulent plane jets with characteristic flapping frequency,and that the decay of the mean velocity along the jet centerline is considerably faster than that of the stable impinging state.展开更多
Direct numerical simulation of coherent structures in the three-dimensional transitional jet with a moderate Reynolds number of 5000 was conducted. The finite volume method was used to discretize the governing equatio...Direct numerical simulation of coherent structures in the three-dimensional transitional jet with a moderate Reynolds number of 5000 was conducted. The finite volume method was used to discretize the governing equations in space; the low-storage, three-order Runge-Kutta scheme was used for time integration. The comparisons between the statistical results of the flow field; the related experimental data were performed to validate the reliability of the present numerical schemes. The emphasis was placed on the study of the spatial evolution of the three-dimensional coherent vortex structures as well as their interactions. It is found that the evolution of the spanwise vortex structures in three-dimensional space is similar to that in two-dimensional jet. The spanwise vortex structures are subject to three-dimensional instability; induce the formation of the streamwise; lateral vortex structures. Going with the breakup; mixing of the spanwise vortex structures, the streamwise; transverse vortex tubes also fall to pieces; the mixing arranged small-scale structures are formed in the flow field. Finally, the arrangement relationship among the spanwise, the streamwise; the lateral vortex structures was analyzed; their interactions were also discussed.展开更多
Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally.It is found that the water depth is a most important par...Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally.It is found that the water depth is a most important parameter to the critical jet exit velocity and the jet flapping frequency.The results indicate that the critical jet exit velocity increases with water depth and the jet flapping frequency is inversely proportional to the water depth.Meanwhile,experimental result also shows that the surface disturbance wave changes the frequency of flapping motion,i.e.the flapping frequency locks-in the disturbing frequency when the disturbing frequency is near and less than the natural flapping frequency.展开更多
Results of experimental studies of round and plane propane microjet combustion in a transverse acoustic field at small Reynolds numbers are presented in this paper. Features of flame evolution under the given conditio...Results of experimental studies of round and plane propane microjet combustion in a transverse acoustic field at small Reynolds numbers are presented in this paper. Features of flame evolution under the given conditions are shown. Based on the new information obtained on free microjet evolution, new phenomena in flame evolution in a transverse acoustic field with round and plane propane microjet combustion are discovered and explained.展开更多
基金Supported by the National Nature Science Foundation of China(10472046)the Scientific Innova-tion Research of College Graduate in Jiangsu Province(CX08B-035Z)the Innovation and Excellence Foundation of Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ08-01)~~
文摘A two-dimensional(2-D) incompressible plane jet is investigated using the lattice Boltzmann method(LBM) for low Reynolds numbers of 42 and 65 based on the jet-exit-width and the maximum jet-exit-velocity. The results show that the mean centerline velocity decays as x-1/3 and the jet spreads as x2/3 in the self-similar region, which are consistent with the theoretical predictions and the experimental data. The time histories and PSD analyses of the instantaneous centerline velocities indicate the periodic behavior and the interaction between periodic components of velocities should not be neglected in the far field region, although it is invisible in the near field region.
基金Project partially supported by the European Union FP7 Clean Sky Joint Technology Initiative“ALLEGRA”(Grant No.308225)
文摘Unsteady wake from upstream components of landing gear impinging on downstream components could be a strong noise source.The use of a plane jet is proposed to reduce this flow-induced noise.Tandem rods with different gap widths were utilized as the test body.Both acoustic and aerodynamic tests were conducted in order to validate this technique.Acoustic test results proved that overall noise emission from tandem rods could be lowered and tonal noise could be removed with use of the plane jet.However,when the plane jet was turned on,in some frequency range it could be the subsequent main contributor instead of tandem rods to total noise emission whilst in some frequency range rods could still be the main contributor.Moreover,aerodynamic tests fundamentally studied explanations for the noise reduction.Specifically,not only impinging speed to rods but speed and turbulence level to the top edge of the rear rod could be diminished by the upstream plane jet.Consequently,the vortex shedding induced by the rear rod was reduced,which was confirmed by the speed,Reynolds stress as well as the velocity fluctuation spectral measured in its wake.This study confirmed the potential use of a plane jet towards landing gear noise reduction.
基金Supported by the National Natural Science Foundation of China(10472046)the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金the Postgraduate Research and Innovation Project of Jiangsu Province(CX08B-035Z)the PhD Thesis Innovation and Excellence Fund of Nanjing University of Aeronautics and Astronautics(BCXJ08-01)
文摘Oscillation phenomena in far field region of plane jets are studied by lattice Boltzmann method over a range of Reynolds numbers (Re) from 16 to 65. Numerical results show that the instantaneous centerline velocities show periodic oscillation behavior in far field region when Re〉38. In contrast, the periodic behavior is invisible in corresponding flow field when Re≤38. For the cases of Re≤38, the exchange of momentum due to straining mo- tion gradually dominates the downstream flow filed, which qualitatively suggests the possibility of iet instability.
基金Project supported by the National Natural Science Foundation of China (Grant No.10921202)
文摘This paper analyses the downstream developments of the mean and the turbulent velocity fields of a plane jet. Based on the conservation of mass and the conservation of momentum, the mean-velocity half width (reflecting the jet spread rate) and the relative mass flow rate (jet entrainment) are related to the decay rate of the centreline mean velocity. These relations are not subject to self-preservation. Both analytical and experimental results suggest that the jet spread rate (K1) and the entrainment rate (K3) (and thus the decay rate K2) can be well estimated from the centreline velocity, i.e., K1 ≈ 0.6K2 and K3 ∝K2. The effect of initial mean velocity and RMS velocity profiles on the downstream mean velocity field appears to be embodied in the constants K1 K2 and K3. The analytical relationship for the self-preserving Reynolds shear stress, obtained for the first time, works well.
文摘Gas solid two-phase turbulent plane jet is applied to many natural s it uations and in engineering systems. To predict the particle dispersion in the ga s jet is of great importance in industrial applications and in the designing of engineering systems. A large eddy simulation of the two-phase plane jet was con d ucted to investigate the particle dispersion patterns. The particles with Stokes numbers equal to 0 0028, 0 3, 2 5, 28 (corresponding to particle diameter 1 μm , 10 μm, 30 μm, 100 μm, respectively) in \%Re\%=11 300 gas flow were studied. The simulation results of gas phase motion agreed well with previous experimental re sults. And the simulation results of the solid particles motion showed that part icles with different Stokes number have different spatial dispersion; and that p articles with intermediate Stokes number have the largest dispersion ratio.
基金supported by the National Natural Science Foundation of China(Grant No.10472046)the Priority Academic Program Development of Jiangsu Higher Education Institutions,grants from the Postgraduate Research and Innovation Project of Jiangsu Province(Grant No.CX08B_035Z)PhD Thesis Innovation and Excellence Fund of Nanjing University of Aeronautics&Astronautics(Grant No.BCXJ08-01)
文摘A submerged,vertical turbulent plane water jet impinging onto a free surface will be self-excited into a flapping oscillation when the jet velocity,leaving the jet orifice,exceeds a critical value.The flapping phenomenon was verified simultaneously in this paper by laser Doppler velocimeter measurement and numerical analyses with volume of fluid approach coupled with a large eddy simulation turbulent model.The general agreement of mean velocities between numerical predictions and experimental results in self-similar region is good for two cases:Reynolds numbers 2090 and 2970,which correspond to the stable impinging jet and flapping jet.Results show that the flapping jet is a new flow pattern for submerged turbulent plane jets with characteristic flapping frequency,and that the decay of the mean velocity along the jet centerline is considerably faster than that of the stable impinging state.
基金Supported by the National Natural Science Foundation of China (Grant No. 50506027)
文摘Direct numerical simulation of coherent structures in the three-dimensional transitional jet with a moderate Reynolds number of 5000 was conducted. The finite volume method was used to discretize the governing equations in space; the low-storage, three-order Runge-Kutta scheme was used for time integration. The comparisons between the statistical results of the flow field; the related experimental data were performed to validate the reliability of the present numerical schemes. The emphasis was placed on the study of the spatial evolution of the three-dimensional coherent vortex structures as well as their interactions. It is found that the evolution of the spanwise vortex structures in three-dimensional space is similar to that in two-dimensional jet. The spanwise vortex structures are subject to three-dimensional instability; induce the formation of the streamwise; lateral vortex structures. Going with the breakup; mixing of the spanwise vortex structures, the streamwise; transverse vortex tubes also fall to pieces; the mixing arranged small-scale structures are formed in the flow field. Finally, the arrangement relationship among the spanwise, the streamwise; the lateral vortex structures was analyzed; their interactions were also discussed.
基金Supported by the National Natural Science Foundation of China(10472046)
文摘Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally.It is found that the water depth is a most important parameter to the critical jet exit velocity and the jet flapping frequency.The results indicate that the critical jet exit velocity increases with water depth and the jet flapping frequency is inversely proportional to the water depth.Meanwhile,experimental result also shows that the surface disturbance wave changes the frequency of flapping motion,i.e.the flapping frequency locks-in the disturbing frequency when the disturbing frequency is near and less than the natural flapping frequency.
文摘Results of experimental studies of round and plane propane microjet combustion in a transverse acoustic field at small Reynolds numbers are presented in this paper. Features of flame evolution under the given conditions are shown. Based on the new information obtained on free microjet evolution, new phenomena in flame evolution in a transverse acoustic field with round and plane propane microjet combustion are discovered and explained.