The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat...The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.展开更多
In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress di...In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.展开更多
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eig...For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.展开更多
In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore...In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore, it is deduced that there is another way to solve problems in elasticity, i.e., by assumption of orthogonal curves of principal stresses.展开更多
The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so t...The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.展开更多
This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems duri...This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress.展开更多
In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residu...In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.展开更多
The structure damage detection with spatial wavelets was approached. First, a plane stress problem, a rectangular plate containing a short crack under a distributed loading on the edge, was investigated. The displac...The structure damage detection with spatial wavelets was approached. First, a plane stress problem, a rectangular plate containing a short crack under a distributed loading on the edge, was investigated. The displacement response data along the parallel and perpendicular lines at different positions from the crack were analyzed with the Haar wavelet. The peak in the spatial variations of the wavelets indicates the direction of the crack. In addition, a transverse crack in a cantilever beam was also investigated in the same ways. For these problems, the different crack positions were also simulated to testify the effectiveness of the technique. All the above numerical simulations were processed by the finite element analysis code, ABACUS. The results show that the spatial wavelet is a powerful tool for damage detection, and this new technique sees wide application fields with broad prospects. (Edited author abstract) 14 Refs.展开更多
On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials ar...On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials are obtained. Two parametersbased on material constants a_1, a_2 are used to derive the rele-vant expressions in a real variable form. Additionally, an analyticalmethod of solving the singular integral for the internal stresses isintroduced, and the corresponding result are given. If a_1=a_2=1, allthe expres- sions obtained for orthotropy can be reduced to thecorresponding ones for isotropy. Because all these expres- sions andresults can be directly used for both isotropic problems andorthotropic problems, it is convenient to use them in engineeringwith the boundary element method (BEM).展开更多
First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the gener...First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the general solution is so simplified that all physical quantities can be expressed by three 'harmonic functions'. Second, solutions of problems of a wedge loaded by point forces and point charge at the apex are also obtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.展开更多
A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance a...A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.展开更多
A method of dealing with two-target problem in terms of coordinate transformation and differential game is presented in this paper. It has analysed the capture region, escape region and danger region. This approach is...A method of dealing with two-target problem in terms of coordinate transformation and differential game is presented in this paper. It has analysed the capture region, escape region and danger region. This approach is helpful to a pilot to possess the favourable position in an air-to-air combat in plane.展开更多
The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However...The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system.展开更多
The mathematical problem of an infinite elastic plane consisting of three different media with an arbitrary number of cracks is considered. It is reduced to singular integral equations along the interfaces and the cra...The mathematical problem of an infinite elastic plane consisting of three different media with an arbitrary number of cracks is considered. It is reduced to singular integral equations along the interfaces and the cracks by a constructive method. Those along the interfaces are further reduced to Fredholm ones.展开更多
We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electri...We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electric feld gradient in the constitutive relations is used. Special attention is paid to the felds near the surface of the hole.展开更多
In this paper.the boundary value problems of plane problems with a simply-ormultiply-connected domain for isotropic linear visca-elosticity are first established byterms of Airy stress function F(Xu t). Secondly some ...In this paper.the boundary value problems of plane problems with a simply-ormultiply-connected domain for isotropic linear visca-elosticity are first established byterms of Airy stress function F(Xu t). Secondly some identity relations betweendisplacements and stresses for plane problems of sisco-and elasticity are discussed indetait and some meaningful conclusions are obtained As an example the deformationresponse for viscoelastic plate with a small circular hote at the center is analyzed undera uniasial uniform extension.展开更多
In the paper, the solution of Saint-Venant problem is obtained through assumption of principal stress curves by means of the equilibrium equations which were deduced in paper [1]. The results show that the speed of sh...In the paper, the solution of Saint-Venant problem is obtained through assumption of principal stress curves by means of the equilibrium equations which were deduced in paper [1]. The results show that the speed of shear approaching to zero is a(3)/y(3) and axial stress approaching to constant is a(2)/y(2).展开更多
In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, a...In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, as well as the concentrated force and moment at the free end. This solution can be applied for any form of gradient distribution. For the basic equations of plane problem, all the partial differential equations governing the stress field, electric, and magnetic potentials are derived. Then, the expressions of Airy stress, electric, and magnetic potential functions are assumed as quadratic polynomials of the longitudinal coordinate. Based on all the boundary conditions, the exact expressions of the three functions can be determined. As numerical examples, the material parameters are set as exponential and linear distributions in the thickness direction. The effects of the material parameters on the mechanical, electric, and magnetic fields of the cantilever beam are analyzed in detail.展开更多
The plane structure of bars jointed to a rigid-body is a complex and universal structure.Some other structure of bars can be considered as its special cases. Many material have different stress-strain relation in tens...The plane structure of bars jointed to a rigid-body is a complex and universal structure.Some other structure of bars can be considered as its special cases. Many material have different stress-strain relation in tension and compression, generally the relation is nonlinear. In this paper,we use the constitutive model of linearly elastic and power hardening of strength difference to analyze plane structure of bars. The displacement method is used to derive the universal expression of calculating stress and strain. The nonlinear equations for computing displacements of the rigid-body has been given and general computing program has been worked out. This problem has been solved satisfactorily.展开更多
After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress func...After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.展开更多
基金the National Natural Science Foundation of China(No.11572210).
文摘The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172211 and 41630633)the National Key Research and Development Project of China(Grant No.2019YFC1509800).
文摘In practical engineering,the total vertical stress in the soil layer is not constant due to stress diffusion,and varies with time and depth.Therefore,the purpose of this paper is to investigate the effect of stress diffusion on the two-dimensional(2D)plane strain consolidation properties of unsaturated soils when the stress varies with time and depth.A series of semi-analytical solutions in terms of excess pore air and water pressures and settlement for 2D plane strain consolidation of unsaturated soils can be derived with the joint use of Laplace transform and Fourier sine series expansion.Then,the inverse Laplace transform of the semi-analytical solution is given in the time domain using a self-programmed code based on Crump’s method.The reliability of the obtained solutions is proved by the degeneration.Finally,the 2D plots of excess pore pressures and the curves of settlement varying with time,considering different physical parameters of unsaturated soil stratum and depth-dependent stress,are depicted and analyzed to study the 2D plane strain consolidation properties of unsaturated soils subjected to the depthdependent stress.
基金Project supported by the National Natural Science Foundation of China (Nos. 59525813 and 19872066).
文摘For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.
文摘In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore, it is deduced that there is another way to solve problems in elasticity, i.e., by assumption of orthogonal curves of principal stresses.
文摘The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.
基金the authority of the National Natural Science Foundation of China(Grant Nos.52178168 and 51378427)for financing this research work and several ongoing research projects related to structural impact performance.
文摘This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing ongeometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision.The initial discussion revolves around the stress and strain of large deformation during a collision, followedby explanations of the fundamental finite element solution method for addressing such issues. The hourglassmode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailedand implemented within the finite element framework. The paper further investigates the dynamic responseand failure modes of Reinforced Concrete (RC) members under asymmetrical impact using a 3D discrete modelin ABAQUS that treats steel bars and concrete connections as bond slips. The model’s validity was confirmedthrough comparisons with the node-sharing algorithm and system energy relations. Experimental parameterswere varied, including the rigid hammer’s mass and initial velocity, concrete strength, and longitudinal and stirrupreinforcement ratios. Findings indicated that increased hammer mass and velocity escalated RC member damage,while increased reinforcement ratios improved impact resistance. Contrarily, increased concrete strength did notsignificantly reduce lateral displacement when considering strain rate effects. The study also explores materialnonlinearity, examining different materials’ responses to collision-induced forces and stresses, demonstratedthrough an elastic rod impact case study. The paper proposes a damage criterion based on the residual axialload-bearing capacity for assessing damage under the asymmetrical impact, showing a correlation betweendamage degree hammer mass and initial velocity. The results, validated through comparison with theoreticaland analytical solutions, verify the ABAQUS program’s accuracy and reliability in analyzing impact problems,offering valuable insights into collision and impact problems’ nonlinearities and practical strategies for enhancingRC structures’ resilience under dynamic stress.
基金supported by the National Natural Science Foundation of China under Grant No.10562002the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002+1 种基金the Natural Science Foundation of Inner Mongolia under Grant No.200508010103the Inner Mongolia University Scientific Research Starting Foundation for Talented Scholars under Grant No.207066
文摘In the present paper, the spectrums of off-diagonal infinite-dimensional Hamiltonian operators are studied. At first, we prove that the spectrum, the continuous-spectrum, and the union of the point-spectrum and residual- spectrum of the operators are symmetric with respect to real axis and imaginary axis. Then for the purpose of reducing the dimension of the studied problems, the spectrums of the operators are expressed by the spectrums of the product of two self-adjoint operators in state spac,3. At last, the above-mentioned results are applied to plane elasticity problems, which shows the practicability of the results.
基金The project supported by the National Natural Science Foundation of China
文摘The structure damage detection with spatial wavelets was approached. First, a plane stress problem, a rectangular plate containing a short crack under a distributed loading on the edge, was investigated. The displacement response data along the parallel and perpendicular lines at different positions from the crack were analyzed with the Haar wavelet. The peak in the spatial variations of the wavelets indicates the direction of the crack. In addition, a transverse crack in a cantilever beam was also investigated in the same ways. For these problems, the different crack positions were also simulated to testify the effectiveness of the technique. All the above numerical simulations were processed by the finite element analysis code, ABACUS. The results show that the spatial wavelet is a powerful tool for damage detection, and this new technique sees wide application fields with broad prospects. (Edited author abstract) 14 Refs.
文摘On the basis of the existing fundamental solutions ofdisplacements, further improvement is made, and then the generalfundamental solutions of both plane elastic and plane plasticproblems for ortho- tropic materials are obtained. Two parametersbased on material constants a_1, a_2 are used to derive the rele-vant expressions in a real variable form. Additionally, an analyticalmethod of solving the singular integral for the internal stresses isintroduced, and the corresponding result are given. If a_1=a_2=1, allthe expres- sions obtained for orthotropy can be reduced to thecorresponding ones for isotropy. Because all these expres- sions andresults can be directly used for both isotropic problems andorthotropic problems, it is convenient to use them in engineeringwith the boundary element method (BEM).
文摘First, based on the basic equations of two-dimensional piezoelectroelasticity, a displacement function is introduced and the general solution is then derived. Utilizing the generalized Almansi's theorem, the general solution is so simplified that all physical quantities can be expressed by three 'harmonic functions'. Second, solutions of problems of a wedge loaded by point forces and point charge at the apex are also obtained in the paper. These solutions can be degenerated to those of problems of point forces and point charge acting on the line boundary of a piezoelectric half-plane.
基金supported by the National Natural Science Foundation of China(No.51420105013)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(No.SKLGDUEK1713)the Fundamental Research Funds for the Central Universities(Nos.106112017CDJXY200003 and 106112017CDJPT200001)
文摘A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.
文摘A method of dealing with two-target problem in terms of coordinate transformation and differential game is presented in this paper. It has analysed the capture region, escape region and danger region. This approach is helpful to a pilot to possess the favourable position in an air-to-air combat in plane.
基金Project supported by the National Natural Science Foundation of China (No.10571110)the Natural Science Foundation of Shandong Province of China (No.2003ZX12)
文摘The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system.
基金Project supported by the Science Fund of the Chinese Academy of Sciences
文摘The mathematical problem of an infinite elastic plane consisting of three different media with an arbitrary number of cracks is considered. It is reduced to singular integral equations along the interfaces and the cracks by a constructive method. Those along the interfaces are further reduced to Fredholm ones.
基金Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State EducationMinistry.
文摘We study electromechanical felds in the anti-plane deformation of an infnite medium of piezoelectric materials of 6 mm symmetry with a circular cylindrical hole. The theory of electro- elastic dielectrics with electric feld gradient in the constitutive relations is used. Special attention is paid to the felds near the surface of the hole.
文摘In this paper.the boundary value problems of plane problems with a simply-ormultiply-connected domain for isotropic linear visca-elosticity are first established byterms of Airy stress function F(Xu t). Secondly some identity relations betweendisplacements and stresses for plane problems of sisco-and elasticity are discussed indetait and some meaningful conclusions are obtained As an example the deformationresponse for viscoelastic plate with a small circular hote at the center is analyzed undera uniasial uniform extension.
文摘In the paper, the solution of Saint-Venant problem is obtained through assumption of principal stress curves by means of the equilibrium equations which were deduced in paper [1]. The results show that the speed of shear approaching to zero is a(3)/y(3) and axial stress approaching to constant is a(2)/y(2).
基金supported by the National Natural Science Foundation of China(Nos.10772106 and11072138)the Shanghai Leading Academic Discipline Project(No.S30106)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(No.20113108110005)the Natural Science Foundation Project of Shanghai(No.15ZR1416100)
文摘In this paper, an exact analytical solution is presented for a transversely isotropic functionally graded magnetomelectro-elastic (FGMEE) cantilever beam, which is subjected to a uniform load on its upper surface, as well as the concentrated force and moment at the free end. This solution can be applied for any form of gradient distribution. For the basic equations of plane problem, all the partial differential equations governing the stress field, electric, and magnetic potentials are derived. Then, the expressions of Airy stress, electric, and magnetic potential functions are assumed as quadratic polynomials of the longitudinal coordinate. Based on all the boundary conditions, the exact expressions of the three functions can be determined. As numerical examples, the material parameters are set as exponential and linear distributions in the thickness direction. The effects of the material parameters on the mechanical, electric, and magnetic fields of the cantilever beam are analyzed in detail.
文摘The plane structure of bars jointed to a rigid-body is a complex and universal structure.Some other structure of bars can be considered as its special cases. Many material have different stress-strain relation in tension and compression, generally the relation is nonlinear. In this paper,we use the constitutive model of linearly elastic and power hardening of strength difference to analyze plane structure of bars. The displacement method is used to derive the universal expression of calculating stress and strain. The nonlinear equations for computing displacements of the rigid-body has been given and general computing program has been worked out. This problem has been solved satisfactorily.
文摘After the stress function and the normal derivative on the boundary for the plane problem of exterior circular domain are expanded into Laurent series, comparing them with the Laurent series of the complex stress function and making use of some formulas in Fourier series and the convolutions, the boundary integral formula of the stress function is derived further. Then the stress function can be obtained directly by the integration of the stress function and its normal derivative on the boundary. Some examples are given. It shows that the boundary integral formula of the stress function is convenient to be used for solving the elastic plane problem of exterior circular domain.