This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional a...This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.展开更多
This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are deriv...This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.展开更多
A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi...A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating is checked by boundary conditions, numerical results for and some conclusions are obtained. properties of very prolate hill. Accuracy of the solution surface motion of oblate and prolate hills are calculated,展开更多
The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-g...The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-gradient approximation(GGA), Perdew–Burke–Ernzerhof(PBE), PBE for solids(PBEsol), PBE with Wu–Cohen exchange(WC), and dispersion-corrected PBE, to investigate the effect of these intermolecular contacts on the absorption spectra of glutamine in the terahertz frequency range. Among these calculations, the solid-state simulated results obtained using the WC method exhibit a good agreement with the measured absorption spectra, and the absorption features are assigned with the help of WC. This indicates that the vibrational modes of glutamine were related to the combination of intramolecular and intermolecular motions, the intramolecular modes were dominated by rocking or torsion involving functional groups; the intermolecular modes mainly result from the translational motions of individual molecules, and the rocking of the hydrogenbonded functional groups.展开更多
The features of the band structures of woodpile three-dimensional (3D) photonic crystals composed of plasma and function dielectric constituents, referred to as function plasma photonic crystals (FPPCs), are theor...The features of the band structures of woodpile three-dimensional (3D) photonic crystals composed of plasma and function dielectric constituents, referred to as function plasma photonic crystals (FPPCs), are theoretically studied by a modified plane wave expansion method, and the formulas for computing the band structures are derived. The arrangement for the proposed FPPCs is that the function dielectric columns are surrounded by plasma, and the embedded dielectric columns are stacked according to the woodpile lattices, which are arrayed with facecentered-tetragonal symmetry. The relative permittivity of function dielectric rods depends on the function coefficient and space coordinates. The relationships between the parameters for inserted function dielectric rods and plasma and the band structures are also investigated. The computed results illustrate that the obtained PBG can be tuned by those parameters as mentioned above. Compared to dielectric-air PCs, function dielectric PCs and plasma dielectric PCs with the same topology, a wider bandwidth of the photonic band gap can be observed in the proposed FPPCs. The calculated results also show us another alternative way to realize reconfigurable applications with 3D FPPCs.展开更多
Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion metho...Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion method were induced to obtain the band structures. That report shows the band diagrams with the effects of function coefficient k and medium column ra under TE and TM waves. The proposed results look correct at first glance, but the authors made some mistakes in their report. Thus, the calculated results in their paper are incorrect. According to our calculations, the errors in their report are corrected, and the correct band structures also are presented in this paper.展开更多
Two problems in solid state physics and superconductivity are addressed by applications of dispersion dynamics. The first is the Hall effect. The dynamics of charges that yield positive Hall coefficients in material h...Two problems in solid state physics and superconductivity are addressed by applications of dispersion dynamics. The first is the Hall effect. The dynamics of charges that yield positive Hall coefficients in material having no mobile positive charges have always been problematic The effect requires both electric and magnetic response, but magnetic deflection is only possible in mobile charges. In high temperature superconductors, these charges must be electrons. Contrary to Newton’s second law, their acceleration is reversed in crystal fields that dictate negative dispersion. This is evident in room temperature measurements, but a second problem arises in supercurrents at low temperatures. The charge dynamics in material having zero internal electric field because of zero resistivity;and zero magnetic field because of the Meissner-Ochsenfeld diamagnetism;while the supercurrents themselves have properties of zero net momentum;zero spin;and sometimes, zero charge;are so far from having been resolved that they may never have been addressed. Again, dispersion dynamics are developed to provide solutions given by reduction of the superconducting wave packet. The reduction is here physically analyzed, though it is usually treated as a quantized unobservable.展开更多
Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a ...Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a central field. There, quantum numbers are integral. The half-integral spinor moment appears to be due to cylindrical motion in an external applied magnetic field;when this is zero , the spin states are degenerate. Consider lifting the degeneracy by diamagnetism in the cylindrical magnetic field: a uniquely derived electronic magnetic radius shares the identical value to the Compton wavelength.展开更多
基金support from the Program for New Century Excellent Talents in University (NCET-05-0248)the Key Program for Applied Basic Research of Tianjin Municipality (07JCZDJC10100)
文摘This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.
基金Program for New Century Excellent Talents in University Under Grant No. NCET-05-0248the Key Program for Applied Basic Research of Tianjin Municipality Under Grant No. 07JCZDJC10100
文摘This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.
基金supported by National Natural Science Foundation of China under grant No.50978183
文摘A closed-form analytical solution of surface motion of a semi-elliptical cylindrical hill for incident plane SH waves is presented. Although some previous analytical work had already dealt with hill topography of semi-circular and shallow circular, our work aims at calculating surface motion of very prolate hill for high incident frequency, and explaining the special vibrating is checked by boundary conditions, numerical results for and some conclusions are obtained. properties of very prolate hill. Accuracy of the solution surface motion of oblate and prolate hills are calculated,
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61302007 and 60977065)the Fundamental Research Funds for the Central Universities of China(Grant No.FRF-SD-12-016A)the Engineering Research Center of Industrial Spectrum Imaging of Beijing,China
文摘The crystal structure of L-glutamine is stabilized by a three-dimensional network of intermolecular hydrogen bonds.We utilize plane-wave density functional theory lattice-dynamics calculations within the generalized-gradient approximation(GGA), Perdew–Burke–Ernzerhof(PBE), PBE for solids(PBEsol), PBE with Wu–Cohen exchange(WC), and dispersion-corrected PBE, to investigate the effect of these intermolecular contacts on the absorption spectra of glutamine in the terahertz frequency range. Among these calculations, the solid-state simulated results obtained using the WC method exhibit a good agreement with the measured absorption spectra, and the absorption features are assigned with the help of WC. This indicates that the vibrational modes of glutamine were related to the combination of intramolecular and intermolecular motions, the intramolecular modes were dominated by rocking or torsion involving functional groups; the intermolecular modes mainly result from the translational motions of individual molecules, and the rocking of the hydrogenbonded functional groups.
基金funded by the Postdoctoral Foundation of Jiangsu Province (No. 1501016A)China Postdoctoral Science Foundation (No. 2015M581790)the Special Grade China Postdoctoral Science Foundation (No. 2016T90455)
文摘The features of the band structures of woodpile three-dimensional (3D) photonic crystals composed of plasma and function dielectric constituents, referred to as function plasma photonic crystals (FPPCs), are theoretically studied by a modified plane wave expansion method, and the formulas for computing the band structures are derived. The arrangement for the proposed FPPCs is that the function dielectric columns are surrounded by plasma, and the embedded dielectric columns are stacked according to the woodpile lattices, which are arrayed with facecentered-tetragonal symmetry. The relative permittivity of function dielectric rods depends on the function coefficient and space coordinates. The relationships between the parameters for inserted function dielectric rods and plasma and the band structures are also investigated. The computed results illustrate that the obtained PBG can be tuned by those parameters as mentioned above. Compared to dielectric-air PCs, function dielectric PCs and plasma dielectric PCs with the same topology, a wider bandwidth of the photonic band gap can be observed in the proposed FPPCs. The calculated results also show us another alternative way to realize reconfigurable applications with 3D FPPCs.
基金Project supported by the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(Grant No.2016T90455)the China Postdoctoral Science Foundation(Grant No.2015M581790)the Chinese Jiangsu Planned Projects for Postdoctoral Research Funds,China(Grant No.1501016A)
文摘Recently, Zhang et al. (Chin. Phys. B 26 024208 (2017)) investigated the band gap structures and semi-Dirac point of two-dimensional function photonic crystals, and the equations for the plane wave expansion method were induced to obtain the band structures. That report shows the band diagrams with the effects of function coefficient k and medium column ra under TE and TM waves. The proposed results look correct at first glance, but the authors made some mistakes in their report. Thus, the calculated results in their paper are incorrect. According to our calculations, the errors in their report are corrected, and the correct band structures also are presented in this paper.
文摘Two problems in solid state physics and superconductivity are addressed by applications of dispersion dynamics. The first is the Hall effect. The dynamics of charges that yield positive Hall coefficients in material having no mobile positive charges have always been problematic The effect requires both electric and magnetic response, but magnetic deflection is only possible in mobile charges. In high temperature superconductors, these charges must be electrons. Contrary to Newton’s second law, their acceleration is reversed in crystal fields that dictate negative dispersion. This is evident in room temperature measurements, but a second problem arises in supercurrents at low temperatures. The charge dynamics in material having zero internal electric field because of zero resistivity;and zero magnetic field because of the Meissner-Ochsenfeld diamagnetism;while the supercurrents themselves have properties of zero net momentum;zero spin;and sometimes, zero charge;are so far from having been resolved that they may never have been addressed. Again, dispersion dynamics are developed to provide solutions given by reduction of the superconducting wave packet. The reduction is here physically analyzed, though it is usually treated as a quantized unobservable.
文摘Because magnetic moment is spatial in classical magnetostatics, we progress beyond the axiomatic concept of the point particle electron in physics. Orbital magnetic moment is well grounded in spherical harmonics in a central field. There, quantum numbers are integral. The half-integral spinor moment appears to be due to cylindrical motion in an external applied magnetic field;when this is zero , the spin states are degenerate. Consider lifting the degeneracy by diamagnetism in the cylindrical magnetic field: a uniquely derived electronic magnetic radius shares the identical value to the Compton wavelength.