The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless a...The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization.展开更多
The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine P...The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine PRSM’s performance in load-carrying capacity and transmission accuracy.Therefore,studying the contact characteristics of PRSM forms the fundamental basis for enhancing its transmission performance.In this study,a three-dimensional parametric analysis method of contact characteristics is proposed based on the PRSM meshing principle and PyVista(a high-level API to the Visualization Toolkit).The proposed method considers the influence of machining errors among various thread teeth.The effects of key machining errors on contact positions and axial clearance,as well as their sensitivities,are analyzed.With excellent solution accuracy,this method exhibits higher calculation efficiency and stronger robustness than the analytical and numerical meshing models.The influence of nominal diameter and pitch errors of the screw,roller,and nut on the axial clearance follows a linear relationship,whereas flank angle errors have negligible effects on the axial clearance.The corresponding influence coefficients for these three machining errors on the axial clearance are 0.623,0.341,and 0.036.The variations in contact positions caused by individual errors are axisymmetric.Flank angle errors and roller diameter errors result in linear displacements of the contact points,whereas pitch errors cause the contact points to move along the arc of the roller diameter.Based on the proposed threedimensional parametric contact characteristics analysis method,the Fuzzy C-Means clustering algorithm considering error sensitivity is utilized to establish a component grouping technique in the selective assembly of critical PRSM components,ensuring the rational and consistent clearances based on the given component’s machining errors.This study provides effective guidance for analyzing contact characteristics and grouping in selective assembly for PRSM components.It also presents the proposed method’s potential applicability to similar calculation problems for contact positions and clearances in other transmission systems.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52065053,51875458)Natural Science Foundation of Inner Mongolia(Grant No.2020BS05003)Inner Mongolia Science and Technology Project(Grant No.2020GG0288).
文摘The recirculating planetary roller screw mechanism(RPRSM)is a transmission mechanism that engages the screw and nut threaded by multiple grooved rollers.In this paper,frstly,the design method of RPRSM nut threadless area is proposed,and the equations related to the structural parameters of nut threadless area are derived.On this basis,the cross-section design method of roller,screw and nut is constructed according to the actual situation of engagements between the screw/nut and the roller.By adjusting the gap between the two beveled edges and that between the arc and the beveled edge,the accuracy of the thread engagements between the screw/nut and the roller can be improved.Secondly,to ensure the engagements of the screw/nut and the roller,the distance equation from the center surface of the diferent rollers to the end surface of cam ring is given.Thirdly,combined with the working principle and structural composition of RPRSM,the component model is established according to its relevant structural parameters,and the virtual assembly is completed.Finally,the 3D model is imported into the ADAMS simulation software for multi-rigid body dynamics.The dynamic characteristic is analyzed,and the simulated values are compared with the theoretical values.The results show that the contact forces between the screw/nut and the roller are sinusoidal,mainly due to the existence of a small gap between the roller and the carrier.The maximum collision forces between the roller and cam ring are independent from load magnitude.Normally,the collision force between the roller and the carrier increases as the load increases.When RPRSM is in the transmission process,the roller angular speed in nut threadless area begins to appear abruptly,and the position of the maximum change is at the contact between the roller and the convex platform of cam ring.The design of the nut threadless area and the proposed virtual assembly method can provide a theoretical guidance for RPRSM research,as well as a reference for overall performance optimization.
基金supported by the National Key R&D Program of China(Grant No.2023YFB3406404).
文摘The planetary roller screw mechanism(PRSM)is a novel precision transmission mechanism that realizes the conversion between linear and rotary motions.The contact characteristics of helical surfaces directly determine PRSM’s performance in load-carrying capacity and transmission accuracy.Therefore,studying the contact characteristics of PRSM forms the fundamental basis for enhancing its transmission performance.In this study,a three-dimensional parametric analysis method of contact characteristics is proposed based on the PRSM meshing principle and PyVista(a high-level API to the Visualization Toolkit).The proposed method considers the influence of machining errors among various thread teeth.The effects of key machining errors on contact positions and axial clearance,as well as their sensitivities,are analyzed.With excellent solution accuracy,this method exhibits higher calculation efficiency and stronger robustness than the analytical and numerical meshing models.The influence of nominal diameter and pitch errors of the screw,roller,and nut on the axial clearance follows a linear relationship,whereas flank angle errors have negligible effects on the axial clearance.The corresponding influence coefficients for these three machining errors on the axial clearance are 0.623,0.341,and 0.036.The variations in contact positions caused by individual errors are axisymmetric.Flank angle errors and roller diameter errors result in linear displacements of the contact points,whereas pitch errors cause the contact points to move along the arc of the roller diameter.Based on the proposed threedimensional parametric contact characteristics analysis method,the Fuzzy C-Means clustering algorithm considering error sensitivity is utilized to establish a component grouping technique in the selective assembly of critical PRSM components,ensuring the rational and consistent clearances based on the given component’s machining errors.This study provides effective guidance for analyzing contact characteristics and grouping in selective assembly for PRSM components.It also presents the proposed method’s potential applicability to similar calculation problems for contact positions and clearances in other transmission systems.