The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced li...The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced linear springs are used to describe the fitting status between internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis (FEA), the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions.展开更多
Planetary gear trains are widely applied in various transmission units.Whether strengths of all gears are accurately calculated or not can affect reliability of the entire system significantly.Strength calculation met...Planetary gear trains are widely applied in various transmission units.Whether strengths of all gears are accurately calculated or not can affect reliability of the entire system significantly.Strength calculation method for planetary gear trains usually follows the method for cylindrical gears,in which the worst meshing positions for both contact stress and bending stress cannot be determined precisely,and calculation results tend to be conservative.To overcome these shortcomings,a kinematics analysis for a planetary gear train is firstly performed,in which the influence of relative speed is investigated.Then the finite element strength analysis of a planetary gear train based on its transient meshing properties is carried out in ANSYS.Time–history curves of contact and bending stresses of sun gear,planetary gears and ring gear are respectively obtained.Also the accurate moment and its corresponding position of the maximum stress are precisely determined.Finally,calculation results of finite element method(FEM)and traditional method are compared in order to verify the effectiveness.Simulation and comparison show the stability of the proposed method in this paper.Researches in this paper establish the foundations for fatigue analysis and optimization for a planetary gear train.展开更多
基金Key Project of Ministry of Education of China (No.106050).
文摘The stress and the elastic deflection of internal ring gear in high-speed spur planetary gear units are investigated. A rim thickness parameter is defined as the flexibility of internal ring gear. Six evenly spaced linear springs are used to describe the fitting status between internal ring gear and the gearcase. The finite element model of the whole internal ring gear is established by means of Pro/E and ANSYS. The loads on meshing teeth of internal ring gear are applied according to the contact ratio and the load-sharing coefficient. With the finite element analysis (FEA), the influences of flexibility and fitting status on the stress and elastic deflection of internal ring gear are predicted. The simulation reveals that the principal stress and deflection increase with the decrease of rim thickness of internal ring gear. Moreover, larger spring stiffness helps to reduce the stress and deflection of internal ring gear. Therefore, the flexibility of internal ring gear must be considered during the design of high-speed planetary gear transmissions.
基金This work is supported in part by National Natural Science Fund(Grant No.51375282)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1266)Special funds for Cultivation of Taishan Scholars and Postgraduate Innovation Fund of Shandong University of Science&Technology(Grant No.YC140314).
文摘Planetary gear trains are widely applied in various transmission units.Whether strengths of all gears are accurately calculated or not can affect reliability of the entire system significantly.Strength calculation method for planetary gear trains usually follows the method for cylindrical gears,in which the worst meshing positions for both contact stress and bending stress cannot be determined precisely,and calculation results tend to be conservative.To overcome these shortcomings,a kinematics analysis for a planetary gear train is firstly performed,in which the influence of relative speed is investigated.Then the finite element strength analysis of a planetary gear train based on its transient meshing properties is carried out in ANSYS.Time–history curves of contact and bending stresses of sun gear,planetary gears and ring gear are respectively obtained.Also the accurate moment and its corresponding position of the maximum stress are precisely determined.Finally,calculation results of finite element method(FEM)and traditional method are compared in order to verify the effectiveness.Simulation and comparison show the stability of the proposed method in this paper.Researches in this paper establish the foundations for fatigue analysis and optimization for a planetary gear train.