期刊文献+
共找到1,501篇文章
< 1 2 76 >
每页显示 20 50 100
GmSTF accumulation mediated by DELLA protein GmRGAs contributes to coordinating light and gibberellin signaling to reduce plant height in soybean 被引量:1
1
作者 Zhuang Li Qichao Tu +7 位作者 Xiangguang Lyu Qican Cheng Ronghuan Ji Chao Qin Jun Liu Bin Liu Hongyu Li Tao Zhao 《The Crop Journal》 SCIE CSCD 2024年第2期432-442,共11页
Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate... Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization. 展开更多
关键词 DELLA protein GmRGAs GmSTFs plant height SOYBEAN
下载PDF
Research Progress on Plant Anti-Freeze Proteins
2
作者 Zhengyang Zhang Weixue Liu +1 位作者 Yinran Huang Ping Li 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1263-1274,共12页
Plant antifreeze proteins(AFPs)are special proteins that can protect plant cells from ice crystal damage in low-temperature environments,and they play a crucial role in the process of plants adapting to cold environ-m... Plant antifreeze proteins(AFPs)are special proteins that can protect plant cells from ice crystal damage in low-temperature environments,and they play a crucial role in the process of plants adapting to cold environ-ments.Proteins with these characteristics have been found infish living in cold regions,as well as many plants and insects.Although research on plant AFPs started relatively late,their application prospects are broad,leading to the attention of many researchers to the isolation,cloning,and genetic improvement of plant AFP genes.Studies have found that the distribution of AFPs in different species seems to be the result of independent evolu-tionary events.Unlike the AFPs found infish and insects,plant AFPs have multiple hydrophilic ice-binding domains,and their recrystallization inhibition activity is about 10–100 times that offish and insect AFPs.Although different plant AFPs have the characteristics of low TH and high RI,their DNA and amino acid sequences are completely different,with small homology.With in-depth research and analysis of the character-istics and mechanisms of plant AFPs,not only has our understanding of plant antifreeze mechanisms been enriched,but it can also be used to improve crop varieties and enhance their freezing tolerance,yield,and quality through genetic engineering.In addition,the study of plant AFPs also contributes to our understanding of freezing resistance mechanisms in other organisms and provides new research directions for thefield of biotech-nology.Therefore,based on the analysis of relevant literature,this article will delve into the concepts,character-istics,research methods,and mechanisms of plant AFPs,summarize the latest research progress and application prospects of AFPs in plant,and provide prospects for the future development of AFP gene research. 展开更多
关键词 plant anti-freeze proteins recrystallization inhibition activity freezing tolerance application prospects
下载PDF
Photoprotective Effects of D1 Protein Turnover and the Lutein Cycle on Three Ephemeral Plants under Heat Stress
3
作者 Minmin Xiao Moxiang Cheng +3 位作者 Shuangquan Xie Xiushuang Wang Xingming Hao Li Zhuang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第6期1841-1857,共17页
To clarify the characteristics of photoinhibition and the primary defense mechanisms of ephemeral plant leaves against photodestruction under high temperature stress,inhibitors and the technology to determine chloroph... To clarify the characteristics of photoinhibition and the primary defense mechanisms of ephemeral plant leaves against photodestruction under high temperature stress,inhibitors and the technology to determine chlorophyll fluorescence were used to explore the protective effects of D1 protein turnover and the lutein cycle in the high temperature stress of the leaves of three ephemeral plants.The results showed that the maximum light conversion efficiency(Fv/Fm)of the ephemeral plant leaves decreased,and the initial fluorescence(Fo)increased under 35℃±1℃ heat stress for 1-4 h or on sunny days in the summer.Both Fv/Fm and Fo could be recovered after 8 h of darkness or afternoon weakening of the external temperature.Streptomycin sulfate(SM)or dithiothreitol(DTT)accelerated the decrease of Fv/Fm and the photochemical quenching coefficient(qP)in the leaves of three ephemeral plants at high temperature,and the decrease was greater in the SM than in the DTT treatment.When the high temperature stress was prolonged,the Y(II)values of light energy distribution parameters of PSII decreased,and the Y(NPQ)and Y(NO)values increased gradually in all the treatment groups of the three ephemeral plants.The results showed that the leaves of the three ephemeral plants had their own highly advanced mechanisms to protect against photodamage,which inhibited the turnover of D1 protein and xanthophyll cycle.This can damage the PSII reaction center in the leaves of the three ephemeral plants under high temperature.The protective effect of D1 protein turnover on heat stress in Erodium oxyrrhynchum and Senecio subdentatus was greater than that of the lutein cycle,while the protective effect of lutein cycle was greater than that of D1 protein turnover in Heliotropium acutiflorum subjected to heat damage. 展开更多
关键词 D1 protein lutein cycle ephemeral plants light inhibition light protection
下载PDF
Eureka lemon zinc finger protein ClDOF3.4 interacts with citrus yellow vein clearing virus coat protein to inhibit viral infection
4
作者 Ping Liao Ting Zeng +4 位作者 Mengyang Huangfu Cairong Zheng Jiequn Ren Changyong Zhou Yan Zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1979-1993,共15页
Citrus yellow vein clearing virus(CYVCV)is a new citrus virus that has become an important factor restricting the development of China’s citrus industry,and the CYVCV coat protein(CP)is associated with viral pathogen... Citrus yellow vein clearing virus(CYVCV)is a new citrus virus that has become an important factor restricting the development of China’s citrus industry,and the CYVCV coat protein(CP)is associated with viral pathogenicity.In this study,the Eureka lemon zinc finger protein(ZFP)ClDOF3.4 was shown to interact with CYVCV CP in vivo and in vitro.Transient expression of ClDOF3.4 in Eureka lemon induced the expression of salicylic acid(SA)-related and hypersensitive response marker genes,and triggered a reactive oxygen species burst,ion leakage necrosis,and the accumulation of free SA.Furthermore,the CYVCV titer in ClDOF3.4 transgenic Eureka lemon plants was approximately 69.4%that in control plants 6 mon after inoculation,with only mild leaf chlorotic spots observed in those transgenic plants.Taken together,the results indicate that ClDOF3.4 not only interacts with CP but also induces an immune response in Eureka lemon by inducing the SA pathways.This is the first report that ZFP is involved in the immune response of a citrus viral disease,which provides a basis for further study of the molecular mechanism of CYVCV infection. 展开更多
关键词 citrus yellow vein clearing virus coat protein ClDOF3.4 plant immune response
下载PDF
Classification and Nomenclature of Plant Metallothionein-like Proteins Based on Their Cysteine Arrangement Patterns 被引量:1
5
作者 刘进元 吕暾 赵南明 《Acta Botanica Sinica》 CSCD 2000年第6期649-652,共4页
随着植物基因组研究的进展 ,在基因文库和蛋白文库登录的植物类金属硫蛋白基因已超过 5 0个 ,接近金属硫蛋白总数的 1/ 3,而且有不断上升的趋势。鉴于目前植物类金属硫蛋白命名与分类随意性太大 ,很有必要建立一个统一合理的命名与分类... 随着植物基因组研究的进展 ,在基因文库和蛋白文库登录的植物类金属硫蛋白基因已超过 5 0个 ,接近金属硫蛋白总数的 1/ 3,而且有不断上升的趋势。鉴于目前植物类金属硫蛋白命名与分类随意性太大 ,很有必要建立一个统一合理的命名与分类法。对植物类金属硫蛋白一级结构进行详细分析后 ,发现该蛋白两端富含半胱氨酸的区域内半胱氨酸的排列方式颇具规律性 ,进而提出了以半胱氨酸排列方式为基础的分类及命名法 ,并阐述了采用这种方法的理由及其可行性。 展开更多
关键词 plant metallothionein_like protein cysteine arrangement patterns CLASSIFICATION
下载PDF
Estimation of Digestible Energy Values of Plant Protein Supplement in Pig 被引量:1
6
作者 李明元 王康宁 《Agricultural Science & Technology》 CAS 2009年第2期97-101,107,共6页
[Objective] The aim of the study was to establish the effective and accurate formulas for estimating the digestible energy (DE) values of plant protein supplement in pig. [Method] By difference method with different... [Objective] The aim of the study was to establish the effective and accurate formulas for estimating the digestible energy (DE) values of plant protein supplement in pig. [Method] By difference method with different amount of alternative feeds (20% -50%), two4 x4 Latin- square-designed trials were taken on eight castrated male pigs [ Yorkshire x Landrace x Neijiang pig, initial body-weight: (46 ±2) kg ] to deter- mine the apparent digestible energy (ADE) of the eight kinds of plant protein supplement commonly used in China, that is, corn gluten meal (sol.), soybean meal ( sol. ), fababean, pea, rapeseed meal ( sol. ), sesame meal ( sol. ), rapeseed meal ( exp. ) and cotton seed meal (sol.). [Resultl (1) Fiber was the most important factor to estimate the ADE of plant protein supplement in pigs, and ADF was the best one. (2) The most effective equations were as below: ( 1 ) OE (kJ/kg DM) = 14 741.86 - 185.01ADF+54.01SCHO+22.45CP ( R =0.988,RSD= 67.9,P〈0.01 ) ; (2) DE (kJ/kg DM) =22 223.26 -209.58ADF+26.79SCHO-1.09GE ( Ff =0.989,RSD=66.9, P〈0.01 ) . [Conclusion] The accurate, practical and specific regression equations were established for DE prediction of plant protein supplement in pig. 展开更多
关键词 plant protein supplement PIG Digestible energy ESTIMATION
下载PDF
Modeling the Cysteine Rich Domain of Plant Metallothionein-like Protein 被引量:2
7
作者 何红珍 朱春明 +3 位作者 吕暾 张日清 赵南明 刘进元 《Acta Botanica Sinica》 CSCD 2002年第10期1155-1159,共5页
With the progress of plant genome research, more than 50 plant metallothionein_like (MT_L) genes have been found, but only several MT_L proteins have been detected and no experimental structural information for MT_L p... With the progress of plant genome research, more than 50 plant metallothionein_like (MT_L) genes have been found, but only several MT_L proteins have been detected and no experimental structural information for MT_L proteins has been reported so far. Since detailed knowledge of the protein tertiary structure is required to understand its biological function, a method is needed to determine the structure of these proteins. In this study, the structural data of known mammal MT was used to determine the interatomic distance constraints of the CXC and CXXC motifs and the metal_sulfur chelating cluster. Then several possible MT conformations were predicted using a distance geometry algorithm. The statistical analysis was used to select those with much lower target function values and lower conformation energies as the predicted tertiary structural models of the cysteine_rich (CR) domains of these proteins. A suitable prediction method for modeling the CR domain of the plant MT_L protein was constructed. The accurately predicted result for the known structure of an MT protein from blue crab suggests that this method is practicable. The tertiary structures of CR domains of rape MT_L protein LSC54 was then modeled with this method. 展开更多
关键词 plant metallothionein-like protein cysteine rich domain tertiary structure prediction distance geometry algorithm
下载PDF
Pathogenesis-related protein genes involved in race-specific allstage resistance and non-race specific high-temperature adultplant resistance to Puccinia striiformis f. sp. tritici in wheat 被引量:4
8
作者 Sumaira Farrakh Meinan Wang Xianming Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第11期2478-2491,共14页
Interactions of the stripe rust pathogen (Puccinia striiformis f. sp responses. Among various genes involved in the plant-pathogen related (PR) protein genes determine different defense responses tritici) with wh... Interactions of the stripe rust pathogen (Puccinia striiformis f. sp responses. Among various genes involved in the plant-pathogen related (PR) protein genes determine different defense responses tritici) with wheat plants activate a w^ae range OT nost nteractions, the expressions of particular pathogenesis-Different types of resistance have been recognized and utilized for developing wheat cultivars for resistance to stripe rust. All-stage resistance can be detected in seedling stage and remains at high levels throughout the plant growth stages. This type of resistance is race-specific and not durable. In contrast, plants with only high-temperature adult-plant (HTAP) resistance are susceptible in seedling stage, but become resistant when plants grow older and the weather becomes warmer. HTAP resistance controlled by a single gene is partial, but usually non-race specific and durable. The objective of this study was to analyze the expression of PR protein genes involved in different types of wheat resistance to stripe rust. The expression levels of 8 PR protein genes (PR1, PRI.2, PR2, PR3, PR4, PR5, PR9 and PRIO) were quantitatively evaluated at 0, 1, 2, 7 and 14 days after inoculation in single resistance gene lines of wheat with all-stage resistance genes YrTrl, Yr76, YrSP and YrExp2 and lines carrying HTAP resistance genes Yr52, Yr59, Yr62 and Yr7B. Races PSTv-4 and PSTv-37 for compatible and incompatible interactions were used in evaluation of PR protein gene expression in wheat lines carrying all-stage resistance genes in the seedling- stage experiment while PSTv-37 was used in the HTAP experiment. Analysis of quantitative real-time polymerase chain reaction (qRT-PCR) revealed that all of the PR protein genes were involved in the different types of resistance controlled by different Yr genes. However, these genes were upregulated at different time points and at different levels during the infection process among the wheat lines with different Yr genes for either all-stage resistance or HTAP resistance. Some of the genes were also induced in compatible interactions, but the levels were almost always higher in the incompatible interaction than in the compatible interaction at the same time point for each Yr gene. These results indicate that both salicylic acid and jasmonate signaling pathways are involved in both race-specific all-stage resistance and non-race specific HTAP resistance. Although expressing at different stages of infection and at different levels, these PR protein genes work in concert for contribution to different types of resistance controlled by different Yr genes. 展开更多
关键词 WHEAT stripe rust plant resistance pathogen-related protein QRT-PCR
下载PDF
Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos 被引量:3
9
作者 ZHANG Wei WANG Xin-min +5 位作者 FAN Rong YIN Gui-xiang WANG Ke DU Li-pu XIAO Le-le YE Xing-guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第1期11-19,共9页
The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signa... The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signal molecules are effective ways to increase plant regeneration rate. Inter-culture is one of ways that have not been investigated in plant tissue culture. Moreover, the use of arabinogalactan proteins (AGPs) and hydrogen peroxide (H202) have been reported to increase regeneration rate in a few plant species other than wheat. The current research pioneeringly uses inter-culture of immature embryos of different wheat genotypes, and also investigates impacts of AGP and H2O2 on the induction of embryogenic calli and plant regeneration. As a result, high-frequency regeneration wheat cultivars Kenong 199 (KN 199) and Xinchun 9 (XC9), together with low-frequency regeneration wheat line Chinese Spring (CS), presented striking increase in the induction of embryogenic calli and plant regeneration rate of CS through inter-culture strategy, up to 52.19 and 67.98%, respectively. Adding 50 to 200 mg L-1 AGP or 0.005 to 0.01‰ H2O2 to the callus induction medium, enhanced growth of embryogenic calli and plant regeneration rate in quite a few wheat genotypes. At 50 mg L-1 AGP application level in callus induction medium plant regeneration rates of 8.49,409.06 and 283.16% were achieved for Jimai 22 (JM22), Jingdong 18 (JD18) and Yangmai 18 (YM18), respectively; whereas at 100 mg L-1 AGP level, CS (105.44%), Chuannong 16 (CN16) (80.60%) and Ningchun 4 (NC4) (62.87%) acted the best. Moreover CS (79.05%), JM22 (7.55%), CN16 (101.87%), YM18 (365.56%), Yangmai 20 (YM20) (10.48%), and CB301 (187.40%) were more responsive to 0.005 %o of H2O2, and NC4 (35.37%) obtained the highest shoot regeneration rates at 0.01%o of H2O2. Overall, these two methods, inter-culture and AGP (or H2O2) application, can be further applied to wheat transgenic research. 展开更多
关键词 WHEAT immature embryos plant regeneration inter-culture arabinogalactan proteins hydrogen peroxide
下载PDF
Origin, evolution, and molecular function of DELLA proteins in plants 被引量:7
10
作者 Huidan Xue Xiang Gao +1 位作者 Peng He Guanghui Xiao 《The Crop Journal》 SCIE CSCD 2022年第2期287-299,共13页
Gibberellic acid(GA), a ubiquitous phytohormone, has various effects on regulators of plant growth and development. GAs promote growth by overcoming growth restraint mediated by DELLA proteins(DELLAs). DELLAs, in the ... Gibberellic acid(GA), a ubiquitous phytohormone, has various effects on regulators of plant growth and development. GAs promote growth by overcoming growth restraint mediated by DELLA proteins(DELLAs). DELLAs, in the GRAS family of plant-specific nuclear proteins, are nuclear transcriptional regulators harboring a unique N-terminal GA perception region for binding the GA receptor GIBBERELLIN INSENSITIVE DWARF1(GID1) and a C-terminal GRAS domain necessary for GA repression activity via interaction with multiple regulatory proteins. The N-terminal conserved region of DELLAs evolved to form a mode of GID1/DELLA-mediated GA signaling originating in bryophytes and ferns. Binding of GA to GID1 increases the affinity between DELLAs and a SCF E3 ubiquitin–ligase complex, thus promoting the eventual destruction of DELLAs by the 26 S proteasome. DELLAs negatively regulate GA response by releasing transcription factors to directly activate downstream genes and indirectly regulate GA biosynthesis genes increasing GA responsiveness and feedback control by promoting GID1 transcription. GA communicates extensively with other plant hormones and uses crosstalk to regulate plant growth and development. In this review, we summarize current understanding of evolutionary DELLA-mediated gibberellin signaling and functional diversification of DELLA, focusing primarily on interactions of DELLAs with diverse phytohormones. 展开更多
关键词 DELLA proteins GA signaling pathway CROSS-TALK plant hormone Growth and development
下载PDF
Protein Extraction Methods for Two-Dimensional Electrophoresis from Baphicacanthus cusia(Nees)Bremek Leaves-A Medicinal Plant with High Contents of Interfering Compounds 被引量:4
11
作者 XIANG Xiao-liang NING Shu-ju +3 位作者 JIANG Xia GONG Xiao-gui ZHU Ren-lei WEI Dao-zhi 《Agricultural Sciences in China》 CSCD 2010年第10期1530-1537,共8页
Protein extraction is a critical step for two-dimensional electrophoresis (2-DE). Different plant samples require different and adaptive protein extraction protocols. The leaves of medicinal plant, Baphicacanthus cu... Protein extraction is a critical step for two-dimensional electrophoresis (2-DE). Different plant samples require different and adaptive protein extraction protocols. The leaves of medicinal plant, Baphicacanthus cusia (Nees) Bremek are notoriously recalcitrant to common protein extraction methods due to high levels of interfering compounds (especially the secondary metabolites and pigments). This study was aimed to establish a routine procedure for the proteomic analysis ofB. cusia leaves, and a new protocol for the protein extraction was developed by optimizing trichloroacetic acid (TCA)/ acetone extraction method. The efficiency of this protocol was demonstrated by comparison with 3 published protein extraction methods (chloroform/acetone, Mg/NP-40, Tris-base/acetone). The results showed that the optimized TCA/ acetone precipitation extraction method gave a relatively high protein yield (9.263 mg g^-1 fresh weight), high-resolution separation, clear protein profiles, the highest proteins spots (1 31 t protein spots), and displayed less contamination in 2- DE gels. Therefore, the results suggested that the optimized TCA/acetone method was the most effective among the 4 methods for B. cusia leaves. 展开更多
关键词 Baphicacanthus cusia (Nees) Bremek medicinal plant protein extraction two-dimensional electrophoresis
下载PDF
An Evaluation on the Ratio of Plant to Animal Protein in the Diet of Juvenile Sea Cucumber(Apostichopus japonicus):Growth,Nutrient Digestibility and Nonspecific Immunity 被引量:1
12
作者 BAO Pengyun LI Xiaoyu XU Yongping 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第6期1479-1486,共8页
This study was conducted to evaluate the effects of plant/animal(P/A) protein ratios(viz.1:4, 1:3, 1:2, 1:1,2:1, 3:1, 4:1) on growth performance, body composition, apparent digestibility of diets, and nonspecific immu... This study was conducted to evaluate the effects of plant/animal(P/A) protein ratios(viz.1:4, 1:3, 1:2, 1:1,2:1, 3:1, 4:1) on growth performance, body composition, apparent digestibility of diets, and nonspecific immunity of juvenile sea cucumber(Apostichopus japonicus). Sea cucumbers were divided into 21 plastic tanks, and each tank was stocked with 15 individuals(initial weight: about 23.73 g). Each feed was allocated to three replicates of sea cucumbers. The feeding experiment lasted for 50 days. Results indicated that weight gain rate(WGR) and body wall weight(BWW) significantly increased as dietary ratio of P/A increased from 1:4 to 3:1, and then decreased significantly with further increase of this ratio(P < 0.05). The body wall coefficient(BWC) showed a similar tendency to WGR and BWW, but no significance was detected among dietary treatments(P > 0.05). The apparent digestibility of dry matter, protein and lipid increased with ratio of P/A increasing from 1:4 to 2:1(P < 0.05), and then decreased with further increase of this ratio. Correspondingly, activities of trypsin and amylase were significantly increased as P/A increased from 1:4 to 2:1(P < 0.05). The activities of SOD and CAT showed a similar trend with WGR, with the highest value observed in the ratio of 1:2 and 1:1, respectively. Results above showed that moderate or relatively higher ratio of P/A protein(1:1-3:1) significantly increased the growth performance, apparent digestibility, and nonspecific immunity of sea cucumber. This will contribute to improving the feed formulation for juvenile cucumbers. 展开更多
关键词 Apostichopus JAPONICUS plant protein animal protein GROWTH digestibility NONSPECIFIC immunity
下载PDF
pLoc_Deep-mPlant: Predict Subcellular Localization of Plant Proteins by Deep Learning 被引量:2
13
作者 Yu-Tao Shao Xin-Xin Liu +1 位作者 Zhe Lu Kuo-Chen Chou 《Natural Science》 2020年第5期237-247,共11页
Current coronavirus pandemic has endangered mankind life. The reported cases are increasing exponentially. Information of plant protein subcellular localization can provide useful clues to develop antiviral drugs. To ... Current coronavirus pandemic has endangered mankind life. The reported cases are increasing exponentially. Information of plant protein subcellular localization can provide useful clues to develop antiviral drugs. To cope with such a catastrophe, a CNN based plant protein subcellular localization predictor called “pLoc_Deep-mPlant” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 95% and its local accuracy is about 90%?-?100%. Both have substantially exceeded the?other existing state-of-the-art predictors. To maximize the convenience for most?experimental scientists, a user-friendly web-server for the new predictor has been established?at?http://www.jci-bioinfo.cn/pLoc_Deep-mPlant/, by which the majority of experimental?scientists can easily obtain their desired data without the need to go through the?mathematical details. 展开更多
关键词 PANDEMIC CORONAVIRUS MULTI-LABEL System plant proteinS Learning at Deeper Level Five-Steps RULE PseAAC
下载PDF
Techniques for Detecting Functional Protein Expression in Transgenic Plants
14
作者 周皓琳 刘建国 白国辉 《Agricultural Science & Technology》 CAS 2014年第3期326-328,332,共4页
With the development of plant genetic engineering techniques, numerous genetically modified plants have been generated. At the same time, the technologies for detecting transgenic organisms get improved constantly, wh... With the development of plant genetic engineering techniques, numerous genetically modified plants have been generated. At the same time, the technologies for detecting transgenic organisms get improved constantly, which also promotes the scientific identification, evaluation and commercial cultivation of transgenic plants. In this review, we evaluate various detection methods for transgenic plants at the level of protein expression. 展开更多
关键词 Transgenic plant protein DETECTION
下载PDF
NBS-LRR Proteins and Their Partners:Molecular Switches of Plant Defense
15
作者 LIU Chunyan QIU Hongmei +3 位作者 WANG Jialin WANG Jing CHEN Qingshan HU Guohua 《Journal of Northeast Agricultural University(English Edition)》 CAS 2008年第4期49-57,共9页
Specificity of the plant innate immune system is often conferred by resistance(R)proteins.Most plant disease resistance (R)proteins contain a series of leucine-rich repeats(LRRs),a nucleotide-binding site(NBS)... Specificity of the plant innate immune system is often conferred by resistance(R)proteins.Most plant disease resistance (R)proteins contain a series of leucine-rich repeats(LRRs),a nucleotide-binding site(NBS),and a putative amino-terminal signaling domain.They are termed NBS-LRR proteins.The LRRs are mainly involved in recognition,and the amino-terminal domain determines signaling specificity,whereas the NBS domain presumably functions as a molecular switch.During the past years,the most important discoveries are the role of partners in NBS-LRR gene mediated defenses,mounting support for the so-called"guard hypothesis"of R gene function,and providing evidence for intramolecular interactions and intermolecular interactions within NBS- LRR proteins as a mode of signaling regulation.The outcome of these interactions determines whether a plant activates its defense responses. 展开更多
关键词 plant defense NBS-LRR protein intramolecular interaction intermolecular interactions
下载PDF
Plant Antifreeze Proteins and Their Expression Regulatory Mechanism
16
作者 LinYuan-zhen LinShan-zhi ZhangZhi-yi ZhangWei LiuWen-feng 《Forestry Studies in China》 CAS 2005年第1期46-52,共7页
Low temperature is one of the major limiting environmental factors which constitutes the growth, development, productivity and distribution of plants. Over the past several years, the proteins and genes associated wi... Low temperature is one of the major limiting environmental factors which constitutes the growth, development, productivity and distribution of plants. Over the past several years, the proteins and genes associated with freezing resistance of plants have been widely studied. The recent progress of domestic and foreign research on plant antifreeze proteins and the identifica- tion and characterization of plant antifreeze protein genes, especially on expression regulatory mechanism of plant antifreeze proteins are reviewed in this paper. Finally, some unsolved problems and the trend of research in physiological functions and gene expression regulatory mechanism of plant antifreeze proteins are discussed. 展开更多
关键词 plant antifreeze proteins thermal hysteresis activity freezing-resistant mechanism expression regulatory mecha- nism
下载PDF
Protein quantitation using dyes obtained from plant materials
17
作者 Isaac Olusanjo Adewale Olanrewaju Roland Akinseye +1 位作者 Adekanbi Idowu Odutayo Isaac Olusanjo Adewale 《Advances in Bioscience and Biotechnology》 2012年第3期227-230,共4页
We present a preliminary report on the use of plant dyes in the quantitation of proteins in solution. We have used ethanol, acid, alkali and water to extract dyes from some plant materials, including flowers of Jungle... We present a preliminary report on the use of plant dyes in the quantitation of proteins in solution. We have used ethanol, acid, alkali and water to extract dyes from some plant materials, including flowers of Jungle flame (Izora coccinea), China rose (Hibiscus rosa-sinensis) and leaves of West African Indigo (Lonchocarpus cyanescens), Mimosa (Mimosa pudica), Roselle (Hibiscus sabdarifa), Jatropha (Jatropha curcas) and Henna (Lawsonia inermis). The dyes obtained were used in the protein-dye binding studies. The colour of the protein-dye complex of the ethanolic extracts was stable and increased linearly with increase in protein concentration. The extracts achieved linearity up to the following amount of proteins in the test samples: Hibiscus rosa-sinensis (60 mg), Ixora coccinea (120 mg), Hibiscus sabdarifa (80 - 100 mg), Jatropha curcas (80 mg), and Lawsonia inermis (100 mg). The sensitivity of the dyes especially at low protein concentrations indicate that they can provide suitable alternatives to other well known standard methods of protein determination. 展开更多
关键词 protein QUANTITATION plant DYES Ethanolic EXTRACT Sensitivity
下载PDF
Gelling Behavior of Plant Proteins and Polysaccharides in Food Systems
18
作者 Florence O. Uruakpa 《Journal of Food Science and Engineering》 2012年第5期247-256,共10页
Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via... Biological macromolecules, such as proteins and polysaccharides, are widely used in food systems because their interactions impart a desirable texture to food products. Plant proteins interact with food components via protein-protein and protein-polysaccharide associations, and the formation of a matrix, which can entrap other food components such as water, lipids and flavors. These networks provide structural integrity to food products and can serve as important functional ingredients in processed foods. Intermolecular interactions of typical polysaccharides result either in simple associations or in the form of a double or triple helix. The linear double helical segments may then interact to form a super junction and a three-dimensional gel network. The formation of these structural networks takes place during processing and involves the transformation from a liquid or viscous sol into a solid material with elastic properties. Interests in the behavior of mixed gels center on the prospects of enhanced flexibility in their mechanical and structural properties compared to those of pure gels. Findings on molecular interactions between plant proteins (e.g., soy, canola and pea proteins) and polysaccharides (e.g., guar gum, carrageenan, and pectin) allow for the modification of physical and textural characteristics of mixed biopolymers to meet desired functional property. 展开更多
关键词 Molecular interactions plant proteins and polysaccharides gelling macromolecules.
下载PDF
Effect of Plant AntifreezeProteins on Porcine Embryo to Cryopreservaton
19
作者 费云标 魏令波 +5 位作者 高素琴 赵淑慧 江勇 朱化彬 罗应荣 张之宣 《Developmental and Reproductive Biology》 1995年第1期21-25,共5页
This study was to research the cryopreservation effect of plant antifieeze proteins(AFPs) on day 7 porcine expanded and hatched blastocysts that were frozen in 1.5 M glycerol by conventional slow freezing method. The ... This study was to research the cryopreservation effect of plant antifieeze proteins(AFPs) on day 7 porcine expanded and hatched blastocysts that were frozen in 1.5 M glycerol by conventional slow freezing method. The developmental rates of porcine embryos frozen with 0.5 mg/ml AFPs in freeze medium and cultured for 12 and 24 hours in vitro are 25% and 0%respectively. With the concentration of AFPs increased to 5 mg/ml, the corresponding values became 80% and 40%. The hatched rates for porcine embryos frozen with 0.5 mg/ml and 5 mg/ml of AFPs and cultured for 24 hours in vitro are 0% and 20% respectively..The developmental and hatched rate of the contnrol are all 0%(0/4). These results indicate that the survival rates of porcine expanded and hatched blastocyst can be improved by supplementing freeze medium with plant AFPs. 展开更多
关键词 Porcine embryo CRYOPRESERVATION plant antifreeze protein
下载PDF
Efficient Plant Regeneration with Arabinogalactan-Proteins on Various Ploidy Levels of Cereals
20
作者 Yasemin Coskun Ragbet Ezgi Duran +2 位作者 Cigdem Savaskan Tunhan Demirci Mehmet Tolgahan Hakan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第3期420-425,共6页
To determine the most effective dose of arabinogalactan-protein (AGP) in regeneration medium, mature embryos of genotypes in three different ploidy levels (Triticum aestivum L. cv. Ikizce-96, Triticum durum Desf. c... To determine the most effective dose of arabinogalactan-protein (AGP) in regeneration medium, mature embryos of genotypes in three different ploidy levels (Triticum aestivum L. cv. Ikizce-96, Triticum durum Desf. cv. Mirzabey and Hordeum vulgare L. cv. Tokak) were used to establish an efficient plant regeneration system for cereals. Percentage of callus production, capacity of regeneration were calculated, and also culture effect, root, stem, and total plant length of regenerant plants were observed in six different regeneration media (MS control, MS+2, 5, 7, 10, 12 mg L-1 AGP) in these three different genotypes. According to the results, the highest amount of callus production was found in Ikizce-96 as 93.75% using 5 mg L-1 dicamba and 1 mg L-1 kinetin in induction medium. However, the most improved callus was observed in diploid barley Tokak as 179.95 mg in weight and 6.18 mm in diameter, respectively. The highest regeneration capacity was observed in the dose of 5 mg L-1 AGP in MS of all the genotypes and hexaploid wheat Ikizce-96 gave the best results with the highest regeneration capacity and culture effects (94.86 and 92.5%) in the same dose of AGE These results indicated that effective dose of AGP in regeneration medium increase plant regeneration in calli derived from cereal mature embryos. 展开更多
关键词 arabinogalactan-protein (AGP) CEREAL mature embryo plant regeneration tissue culture
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部