Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion...Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.展开更多
Relationships among productivity,leaf phenology,and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests,which contribute 25% of terrestria...Relationships among productivity,leaf phenology,and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests,which contribute 25% of terrestrial productivity.On the one hand,as moisture availability declines,trees shed leaves to reduce transpiration and the risk of hydraulic failure.On the other hand,increases in light availability promote the replacement of senescent leaves to increase productivity.Here,we provide a comprehensive framework that relates the seasonality of climate,leaf abscission,and leaf productivity across the evergreen broadleaved tropical/subtropical forest biome.The seasonal correlation between rainfall and light availability varies from strongly negative to strongly positive across the tropics and maps onto the seasonal correlation between litterfall mass and productivity for 68 forests.Where rainfall and light covary positively,litterfall and productivity also covary positively and are always greater in the wetter sunnier season.Where rainfall and light covary negatively,litterfall and productivity are always greater in the drier and sunnier season if moisture supplies remain adequate;otherwise productivity is smaller in the drier sunnier season.This framework will improve the representation of tropical/subtropical forests in Earth system models and suggests how phenology and productivity will change as climate change alters the seasonality of cloud cover and rainfall across tropical/subtropical forests.展开更多
基金funded by the National Natural Science Foundation of China (No.32360418)the Guizhou Provincial Basic Research Program (Natural Science)(No.QianKeHeJiChu-ZK[2024]YiBan022)。
文摘Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(grant number 2020B0301030004)the National Natural Science Foundation of China(grant numbers 31971458,41971275)+3 种基金the Special highlevel plan project of Guangdong Province(grant number 2016TQ03Z354)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(grant number 311021009)the Guangdong Basic and Applied Basic Research Foundation(grant number 2020A151501091)GDAS Special Project of Science and Technology Development(grant number 2020GDASYL-20200102002).
文摘Relationships among productivity,leaf phenology,and seasonal variation in moisture and light availability are poorly understood for evergreen broadleaved tropical/subtropical forests,which contribute 25% of terrestrial productivity.On the one hand,as moisture availability declines,trees shed leaves to reduce transpiration and the risk of hydraulic failure.On the other hand,increases in light availability promote the replacement of senescent leaves to increase productivity.Here,we provide a comprehensive framework that relates the seasonality of climate,leaf abscission,and leaf productivity across the evergreen broadleaved tropical/subtropical forest biome.The seasonal correlation between rainfall and light availability varies from strongly negative to strongly positive across the tropics and maps onto the seasonal correlation between litterfall mass and productivity for 68 forests.Where rainfall and light covary positively,litterfall and productivity also covary positively and are always greater in the wetter sunnier season.Where rainfall and light covary negatively,litterfall and productivity are always greater in the drier and sunnier season if moisture supplies remain adequate;otherwise productivity is smaller in the drier sunnier season.This framework will improve the representation of tropical/subtropical forests in Earth system models and suggests how phenology and productivity will change as climate change alters the seasonality of cloud cover and rainfall across tropical/subtropical forests.