期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Relationships among the Stem,Aboveground and Total Biomass across Chinese Forests 被引量:4
1
作者 Dong-Liang Cheng Gen-Xuan Wang +2 位作者 Tao Li Qing-Long Tang Chun-Mei Gong 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第11期1573-1579,共7页
Forest biomass plays a key role in the global carbon cycle. In the present study, a general allometric model was derived to predict the relationships among the stem biomass Ms, aboveground biomass MA and total biomass... Forest biomass plays a key role in the global carbon cycle. In the present study, a general allometric model was derived to predict the relationships among the stem biomass Ms, aboveground biomass MA and total biomass MT, based on previously developed scaling relationships for leaf, stem and root standing biomass. The model predicted complex scaling exponents for MT and/or MA with respect to Ms. Because annual biomass accumulation in the stem, root and branch far exceeded the annual increase in standing leaf biomass, we can predict that MT ∝MA ∝ Ms as a simple result of the model. Although slight variations existed in different phyletic affiliations (i.e. conifers versus angiosperms), empirical results using Model Type Ⅱ (reduced major axis) regression supported the model's predictions. The predictive formulas among stem, aboveground and total biomass were obtained using Model Type I (ordinary least squares) regression to estimate forest biomass. Given the low mean percentage prediction errors for aboveground (and total biomass) based on the stem biomass, the results provided a reasonable method to estimate the biomass of forests at the individual level, which was insensitive to the variation in local environmental conditions (e.g. precipitation, temperature, etc.). 展开更多
关键词 aboveground biomass ALLOMETRY forest isometric scaling plant biomass allocation patterns stem biomass total biomass.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部