Plant branching development plays an important role in plant morphogenesis(aboveground plant type),the number and angle of branches are important agronomic characters that determine crop plant type.Effective branches ...Plant branching development plays an important role in plant morphogenesis(aboveground plant type),the number and angle of branches are important agronomic characters that determine crop plant type.Effective branches determine the number of panicles or pods of crops and then control the yield of crops.With the rapid development of plant genomics and molecular genetics,great progress has been made in the study of branching development.In recent years,a series of important branching-related genes have been validated from Arabidopsis thaliana,rice,pea,tomato and maize mutants.It is reviewed that plant branching development is controlled by genetic elements and plant hormones,such as auxin,cytokinin and lactones(or lactone derivatives),as well as by environment and genetic elements.Meanwhile,shoot architecture in crop breeding was discussed in order to provide theoretical basis for the study of crop branching regulation.展开更多
Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cul...Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cultivars,quantitative trait loci(QTLs)for these traits were detected based on the phenotypic evaluation data in nine environments across four locations and 4 years and a previously reported genetic linkage map of an recombinant inbred line(RIL)population of upland cotton.Results:In total,53 QTLs of PH and FBN,were identified on 21 chromosomes of the cotton genome except chromosomes c02,c09-c11,and c22.For PH,27 QTLs explaining 3.81%–8.54%proportions of phenotypic variance were identified on 18 chromosomes except c02,c08-c12,c15,and c22.For FBN,26 QTLs explaining 3.23%–11.00%proportions of phenotypic variance were identified on 16 chromosomes except c02-c03,c06,c09-c11,c17,c22-c23,and c25.Eight QTLs were simultaneously identified in at least two environments.Three QTL clusters containing seven QTLs were identified on three chromosomes(c01,c18 and c21).Eleven QTLs were the same as previously reported ones,while the rest were newly identified.Conclusions:The QTLs and QTL clusters identified in the current study will be helpful to further understand the genetic mechanism of PH and FBN development of cotton and will enhance the development of excellent cultivars for mechanical managements in cotton production.展开更多
Genotype and agronomic management greatly influence crop growth and grain yield in wheat (Triticum aestivum L.). To ensure sustainable production, seeding rate selection is important to maximize efficiency of every pl...Genotype and agronomic management greatly influence crop growth and grain yield in wheat (Triticum aestivum L.). To ensure sustainable production, seeding rate selection is important to maximize efficiency of every plant. Tillering can allow wheat plants to adjust growth relative to plant density and quality of growing conditions. This research sought to determine a method for assessing tillering of wheat cultivars and develop a standardized approach for characterizing cultivar tillering capacity. Nine cultivars with diverse genetic and phenotypic characteristics were seeded in 2017-2018 at Prosper, ND using various seeding techniques at differing plant spacing arrangements to evaluate tillering habit and spikes plant-1. Cultivars grown at population densities common in grower fields did not express full tillering potential. Spaced-plantings of cultivars promoted cultivar expression of tillering phenotype. The SOFATT (seed only a few, and then thin) method, where average spikes plant-1 was determined from multiple plants sampled from a cultivar grown at spaced-plantings (inter-row and intra-row spacing at 30 ± 12 cm), is recommended to properly assess tillering habits of wheat cultivars. Breeders and researchers can use results from SOFATT evaluations to determine tillering capacity rating for each cultivar based on raw or transformed z-score values for spikes plant-1.展开更多
Wheat tiller angle(TA)is an important agronomic trait that contributes to grain production by affecting plant architecture.It also plays a crucial role in high-yield wheat breeding.An association panel and a recombina...Wheat tiller angle(TA)is an important agronomic trait that contributes to grain production by affecting plant architecture.It also plays a crucial role in high-yield wheat breeding.An association panel and a recombinant inbred line(RIL)population were used to map quantitative trait loci(QTL)for TA.Results showed that 470 significant SNPs with 10.4%–28.8%phenotypic variance explained(PVE)were detected in four replicates by a genome-wide association study(GWAS).Haplotype analysis showed that the TA_Hap_4B1 locus on chromosome 4B was a major QTL to regulate wheat TA.Ten QTL were totally detected by linkage mapping with the RIL population,and QTA.hau-4B.1 identified in six environments with the PVE of 7.88%–18.82%was a major and stable QTL.A combined analysis demonstrated that both TA_Hap_4B1 and QTA.hau-4B.1 were co-located on the same region.Moreover,QTA.hau-4B.1 was confirmed by bulked segregant RNA-Seq(BSR-Seq)analysis.Phenotypic analysis showed that QTA.hau-4B.1was also closely related to yield traits.Furthermore,Traes CS4B02G049700 was considered as a candidate gene through analysis of gene sequence and expression.This study can be potentially used in cloning key genes modulating wheat tillering and provides valuable genetic resources for improvement of wheat plant architecture.展开更多
Rice production in the tidal floodplain of southern Bangladesh is constrained by uncontrolled water. In absence of high yielding varieties suitable for tidal floodplain, farmers grow low yielding indigenous cultivars ...Rice production in the tidal floodplain of southern Bangladesh is constrained by uncontrolled water. In absence of high yielding varieties suitable for tidal floodplain, farmers grow low yielding indigenous cultivars of tall plant type. This paper reports the effect of agronomic management on the yield and yield components of an indigenous rice cultivar, Sadamota. The trial was conducted in 10 farmers’ plots located widely apart in two upazila (sub-districts)—Jhalakati and Rajapur. 45 d and 60 d old seedlings were transplanted either in rows at 40 cm × 20 cm spacing or following farmers’ traditional practice of random planting. Transplanting 60 d old seedlings produced 14% higher yield compared with 45 d old seedlings. Transplanting in rows also increased grain yield by 12%. The yield increase was associated with hill density, the number of effective tillers per hill and the number of spikelets per panicle.展开更多
Tiller angle is very important for plant architecture and canopy structure in rice (Oryza sativa L.). Physiological and ecological characteristics of three rice genotypes with different tiller angle habits were comp...Tiller angle is very important for plant architecture and canopy structure in rice (Oryza sativa L.). Physiological and ecological characteristics of three rice genotypes with different tiller angle habits were compared in the paper. DI508, a genotype with changing tiller angle during the growth, has semi-erect tillers at early tillering stage, similar to genotype M09, and had erect tillers at late stage, similar to genotype 9308. In terms of dry biomass per plant, DI508 was consistently higher than those of M09 and 9308 throughout the growth. It was also a distinct difference of leaf area per plant that DI508 was larger than two others. From booting stage, DI508 and 9308 maintained higher photosynthetic ability of the topmost three leaves, while M09 showed rapid decline in photosynthesis during grain filling. It may be concluded that the genotype DI508 with dynamic tiller angle habit has a comprehensive advantage of fast growth and high weed competition at early stage and slow decline in photosynthesis at late stage.展开更多
【目的】分蘖是影响水稻产量的关键因素,鉴定分蘖相关的功能基因,可为其功能的解析提供依据。【方法】以新发现的多蘖矮杆突变体high tillering and dwarf (htd5)为研究材料,鉴定突变体表型,分析已报道的多蘖矮杆功能基因在htd5中的表...【目的】分蘖是影响水稻产量的关键因素,鉴定分蘖相关的功能基因,可为其功能的解析提供依据。【方法】以新发现的多蘖矮杆突变体high tillering and dwarf (htd5)为研究材料,鉴定突变体表型,分析已报道的多蘖矮杆功能基因在htd5中的表达量变化,并检测这些基因的编码区序列在htd5基因组中的变异情况。【结果】(1)与野生型相比,突变体htd5的一次分蘖数目、二次分蘖数目以及总分蘖数目均急剧增加,而株高、一次枝梗数目、二次枝梗数目则显著降低;突变体htd5倒Ⅰ、Ⅱ、Ⅲ节间伸长受阻,各节间直径也显著缩小;此外,突变体htd5的粒宽、粒厚和千粒质量均显著降低。(2)与野生型相比,独角金内酯信号途径的正调控因子D27、D14、D3、DHT1的表达量均显著增加,而负调控因子D53的表达量显著下降;测序分析结果表明,已报道的多蘖矮杆功能基因编码区序列在htd5基因组中均没有发生变异。【结论】突变基因HTD5很可能是一个新的多蘖矮杆基因,通过调控独角金内酯信号途径,影响水稻分蘖的产生。展开更多
文摘Plant branching development plays an important role in plant morphogenesis(aboveground plant type),the number and angle of branches are important agronomic characters that determine crop plant type.Effective branches determine the number of panicles or pods of crops and then control the yield of crops.With the rapid development of plant genomics and molecular genetics,great progress has been made in the study of branching development.In recent years,a series of important branching-related genes have been validated from Arabidopsis thaliana,rice,pea,tomato and maize mutants.It is reviewed that plant branching development is controlled by genetic elements and plant hormones,such as auxin,cytokinin and lactones(or lactone derivatives),as well as by environment and genetic elements.Meanwhile,shoot architecture in crop breeding was discussed in order to provide theoretical basis for the study of crop branching regulation.
基金funded by the National Key R&D Program of China(2017YFD01016002016YFD0100505)+1 种基金the Fundamental Research Funds for Central Research Institutes(Y2017JC48)the Natural Science Foundation of China(31371668,31471538)。
文摘Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cultivars,quantitative trait loci(QTLs)for these traits were detected based on the phenotypic evaluation data in nine environments across four locations and 4 years and a previously reported genetic linkage map of an recombinant inbred line(RIL)population of upland cotton.Results:In total,53 QTLs of PH and FBN,were identified on 21 chromosomes of the cotton genome except chromosomes c02,c09-c11,and c22.For PH,27 QTLs explaining 3.81%–8.54%proportions of phenotypic variance were identified on 18 chromosomes except c02,c08-c12,c15,and c22.For FBN,26 QTLs explaining 3.23%–11.00%proportions of phenotypic variance were identified on 16 chromosomes except c02-c03,c06,c09-c11,c17,c22-c23,and c25.Eight QTLs were simultaneously identified in at least two environments.Three QTL clusters containing seven QTLs were identified on three chromosomes(c01,c18 and c21).Eleven QTLs were the same as previously reported ones,while the rest were newly identified.Conclusions:The QTLs and QTL clusters identified in the current study will be helpful to further understand the genetic mechanism of PH and FBN development of cotton and will enhance the development of excellent cultivars for mechanical managements in cotton production.
文摘Genotype and agronomic management greatly influence crop growth and grain yield in wheat (Triticum aestivum L.). To ensure sustainable production, seeding rate selection is important to maximize efficiency of every plant. Tillering can allow wheat plants to adjust growth relative to plant density and quality of growing conditions. This research sought to determine a method for assessing tillering of wheat cultivars and develop a standardized approach for characterizing cultivar tillering capacity. Nine cultivars with diverse genetic and phenotypic characteristics were seeded in 2017-2018 at Prosper, ND using various seeding techniques at differing plant spacing arrangements to evaluate tillering habit and spikes plant-1. Cultivars grown at population densities common in grower fields did not express full tillering potential. Spaced-plantings of cultivars promoted cultivar expression of tillering phenotype. The SOFATT (seed only a few, and then thin) method, where average spikes plant-1 was determined from multiple plants sampled from a cultivar grown at spaced-plantings (inter-row and intra-row spacing at 30 ± 12 cm), is recommended to properly assess tillering habits of wheat cultivars. Breeders and researchers can use results from SOFATT evaluations to determine tillering capacity rating for each cultivar based on raw or transformed z-score values for spikes plant-1.
基金funded by the National Natural Science Foundation of China(31971947 and 32072057)Henan Major Science and Technology Projects(201300110800,201300111600)Key Scientific and Technological Project of Henan Province(222102110026)。
文摘Wheat tiller angle(TA)is an important agronomic trait that contributes to grain production by affecting plant architecture.It also plays a crucial role in high-yield wheat breeding.An association panel and a recombinant inbred line(RIL)population were used to map quantitative trait loci(QTL)for TA.Results showed that 470 significant SNPs with 10.4%–28.8%phenotypic variance explained(PVE)were detected in four replicates by a genome-wide association study(GWAS).Haplotype analysis showed that the TA_Hap_4B1 locus on chromosome 4B was a major QTL to regulate wheat TA.Ten QTL were totally detected by linkage mapping with the RIL population,and QTA.hau-4B.1 identified in six environments with the PVE of 7.88%–18.82%was a major and stable QTL.A combined analysis demonstrated that both TA_Hap_4B1 and QTA.hau-4B.1 were co-located on the same region.Moreover,QTA.hau-4B.1 was confirmed by bulked segregant RNA-Seq(BSR-Seq)analysis.Phenotypic analysis showed that QTA.hau-4B.1was also closely related to yield traits.Furthermore,Traes CS4B02G049700 was considered as a candidate gene through analysis of gene sequence and expression.This study can be potentially used in cloning key genes modulating wheat tillering and provides valuable genetic resources for improvement of wheat plant architecture.
文摘Rice production in the tidal floodplain of southern Bangladesh is constrained by uncontrolled water. In absence of high yielding varieties suitable for tidal floodplain, farmers grow low yielding indigenous cultivars of tall plant type. This paper reports the effect of agronomic management on the yield and yield components of an indigenous rice cultivar, Sadamota. The trial was conducted in 10 farmers’ plots located widely apart in two upazila (sub-districts)—Jhalakati and Rajapur. 45 d and 60 d old seedlings were transplanted either in rows at 40 cm × 20 cm spacing or following farmers’ traditional practice of random planting. Transplanting 60 d old seedlings produced 14% higher yield compared with 45 d old seedlings. Transplanting in rows also increased grain yield by 12%. The yield increase was associated with hill density, the number of effective tillers per hill and the number of spikelets per panicle.
基金the National Natural Science Foundation of China (30700486)the Natural Science Foundation of Zhejiang Province,China(Y3110099)the China Spark Program(2008GA700004) for their support to this project
文摘Tiller angle is very important for plant architecture and canopy structure in rice (Oryza sativa L.). Physiological and ecological characteristics of three rice genotypes with different tiller angle habits were compared in the paper. DI508, a genotype with changing tiller angle during the growth, has semi-erect tillers at early tillering stage, similar to genotype M09, and had erect tillers at late stage, similar to genotype 9308. In terms of dry biomass per plant, DI508 was consistently higher than those of M09 and 9308 throughout the growth. It was also a distinct difference of leaf area per plant that DI508 was larger than two others. From booting stage, DI508 and 9308 maintained higher photosynthetic ability of the topmost three leaves, while M09 showed rapid decline in photosynthesis during grain filling. It may be concluded that the genotype DI508 with dynamic tiller angle habit has a comprehensive advantage of fast growth and high weed competition at early stage and slow decline in photosynthesis at late stage.
文摘【目的】分蘖是影响水稻产量的关键因素,鉴定分蘖相关的功能基因,可为其功能的解析提供依据。【方法】以新发现的多蘖矮杆突变体high tillering and dwarf (htd5)为研究材料,鉴定突变体表型,分析已报道的多蘖矮杆功能基因在htd5中的表达量变化,并检测这些基因的编码区序列在htd5基因组中的变异情况。【结果】(1)与野生型相比,突变体htd5的一次分蘖数目、二次分蘖数目以及总分蘖数目均急剧增加,而株高、一次枝梗数目、二次枝梗数目则显著降低;突变体htd5倒Ⅰ、Ⅱ、Ⅲ节间伸长受阻,各节间直径也显著缩小;此外,突变体htd5的粒宽、粒厚和千粒质量均显著降低。(2)与野生型相比,独角金内酯信号途径的正调控因子D27、D14、D3、DHT1的表达量均显著增加,而负调控因子D53的表达量显著下降;测序分析结果表明,已报道的多蘖矮杆功能基因编码区序列在htd5基因组中均没有发生变异。【结论】突变基因HTD5很可能是一个新的多蘖矮杆基因,通过调控独角金内酯信号途径,影响水稻分蘖的产生。