Three big field projects, independent irrigation and drainage facilities, and a blocking net, which are auxiliary projects of a green planting and breeding pattern composed of rice and red swamp crawfish (Procambarus...Three big field projects, independent irrigation and drainage facilities, and a blocking net, which are auxiliary projects of a green planting and breeding pattern composed of rice and red swamp crawfish (Procambarus clarkii), spatial and temporal coupling technology of "planting rice in one season and breeding red swamp crawfish in three seasons", green fertilization technology, green prevention and control technology, control technology of water level, and throwing technology of bait in Lixiahe region of Jiangsu Province were introduced successively, which can provide technical support for the development of ecological planting and breeding patterns and realization of green production in paddy fields.展开更多
Cotton (Gossypium hirsutum L.) is an importantfiber cash crop,but its root traits related to phosphorus (P) acquisition,including mycorrhizal root traits,are poorly understood.Eight cotton varieties bred in northweste...Cotton (Gossypium hirsutum L.) is an importantfiber cash crop,but its root traits related to phosphorus (P) acquisition,including mycorrhizal root traits,are poorly understood.Eight cotton varieties bred in northwestern China that were released between 1950 and 2013 were grown in pots with or without one arbuscular mycorrhizal fungal (AMF) species(Funneliformis mosseae) at three P supply levels (0,50 and 300 mg P as KH_(2)PO_(4)kg^(-1)).Eleven root traits were measured and calculated after 7 wk of growth.The more recent accessions had smaller root diameters,acquired less P and produced less biomass,indicating an (inadvertent) varietal selection for thinner roots that provided less cortical space for AMF,which then increased the need for a high P fertilizer level.At the two lower P levels,the mycorrhizal plants acquired more P and produced more biomass than non-mycorrhizal plants (3.2 vs.0.9 mg P per plant;1.8 vs.0.9 g biomass per plant at P_(0);14.5 vs.1.7 mg P per plant;and 4.7 vs.1.6 g biomass per plant at P_(50)).At the highest P level,the mycorrhizal plants acquired more P than non-mycorrhizal plants (18.8 vs.13.4 mg per P plant),but there was no difference in biomass (6.2 vs.6.3 g per plant).At the intermediate P level,root diameter was significantly positively correlated with shoot biomass,P concentration and the P content of mycorrhizal plants.The results of our study support the importance of the outsourcing model of P acquisition in the root economics space framework.Inadvertent varietal selection in the last decades,resulting in thinner roots and a lower benefit from AMF,has led to a lower productivity of cotton varieties at moderate P supply (i.e.,when mycorrhizal,the average biomass of older varieties 5.0 g per plant vs.biomass of newer varieties 4.4 g per plant),indicating the need to rethink cotton breeding efforts in order to achieve high yields without very high P input.One feasible way to solve the problem of inadvertent varietal selection for cotton is to be aware of the trade-offs between the root do-it-yourself strategy and the outsourcing towards AMF strategy,and to consider both morphological and mycorrhizal root traits when breeding cotton varieties.展开更多
This study analyzed the impact of participatory plant breeding (PPB) and participatory variety selection (PVS) on the adoption of improved sweetpotato varieties (ISPV) in central Uganda. The study quantitatively...This study analyzed the impact of participatory plant breeding (PPB) and participatory variety selection (PVS) on the adoption of improved sweetpotato varieties (ISPV) in central Uganda. The study quantitatively assessed how the two approaches influence farmers' uptake of the improved sweetpotato varieties and also determined other factors influencing this adoption. This was done by estimating a robust standard errors logit model. Both PPB and PVS positively and significantly influenced the likelihood of adoption of improved sweetpotato varieties at 5% and 10% levels, respectively. Other variables that positively influenced the adoption are extension services, training in sweetpotato production, farming experience, and off-farm income of the household. Farmers who participated in the plant breeding and variety selection processes were 37 and 6.7 times more likely to adopt the improved sweetpotato varieties than those who had not, respectively. Farmers who were trained specifically in sweetpotato production were 8.8 times more likely to adopt the improved varieties than those who had not received this type of training.展开更多
Appropriate knowledge of the parental cultivars is a pre-requisite for a successful breeding program.This study characterized fruit yield,quality attributes,and molecular variations of ten tomato cultivars during thre...Appropriate knowledge of the parental cultivars is a pre-requisite for a successful breeding program.This study characterized fruit yield,quality attributes,and molecular variations of ten tomato cultivars during three consecutive generations under greenhouse conditions.Peto 86,Castle Rock,and Red Star cultivars showed the highest fruit yield(kg/plant),total phenolic compounds(TPC),and sap acidity.Principal component analysis categorized the evaluated fruit yield into three groups based on their quality attributes.A robust positive correlation appeared among traits inside each group.A positive correlation was likewise noticed between the first and the second groups.However,a negative correlation was detected between the first,the second and the third group.Molecular profiling,using seven inter-simple sequence repeat(ISSR)primers,produced 60 loci,including 49 polymorphic loci.The molecular analysis also pinpointed the highest genetic similarity(0.92)between P73 and Moneymaker,while the lowest genetic similarity(0.46)was observed between Castle Rock and Moneymaker.The cultivars P73 and Moneymaker showed the lowest genetic distance(2.24),while the highest genetic distance(5.92)was observed between Super Marmand and Peto86,on the one hand,and between Castle Rock and Moneymaker,on the other hand.The chemical analysis of fruit sap indicated the highest levels of TPC,total flavonoids,anthocyanin,ascorbic acid and total soluble solids in Peto 86 and Castle Rock cultivars.Phylogeny analysis of tomato cultivars based on morphological and molecular attributes indicated four distinct clades.Peto 86,Castle Rock,and Red star cultivars can be recommended for the tomato hybridization breeding programs in the future,with other tomato cultivars as potentially high-yielding parents.展开更多
Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increa...Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increase efficiency,especially in the recalcitrant major cereals plants.Recent breakthroughs in transformation efficiency continue its role as a mainstream technique in CRISPR/Cas-based genome editing and gene stacking.These modifications led to higher transformation frequency and lower but more stable transgene copies with the capability to revolutionize modern agriculture.In this review,we provide a brief overview of the history of Agrobacterium-mediated plant transformation and focus on the most recent progress to improve the system in both the Agrobacterium and the host recipient.A promising future for transformation in biotechnology and agriculture is predicted.展开更多
Biotechnology policies and regulations must be revised and updated to reflect the most recent advances in plantbreeding technology. New Plant Breeding Techniques(NPBT) such as gene editing have been applied to address...Biotechnology policies and regulations must be revised and updated to reflect the most recent advances in plantbreeding technology. New Plant Breeding Techniques(NPBT) such as gene editing have been applied to address the myriad of challenges in plant breeding, while the use of NPBT as emerging biotechnological tools raises legal and ethical concerns. This study aims to highlight how gene editing is operationalized in the existing literature and examine the critical issues of ethical and legal issues of gene editing for plant breeding. We carried out a systematic literature review(SLR) to provide the current states of ethical and legal discourses surrounding this topic. We also identified critical research priority areas and policy gaps that must be addressed when designing the future governance of gene editing in plant breeding.展开更多
Cold atmospheric plasmas(CAPs)have shown great applicability in agriculture.Many kinds of CAP sources have been studied in agricultural applications to promote plant growth and cure plant diseases.We briefly review th...Cold atmospheric plasmas(CAPs)have shown great applicability in agriculture.Many kinds of CAP sources have been studied in agricultural applications to promote plant growth and cure plant diseases.We briefly review the state-of-the-art stimulating effects of atmospheric-pressure dielectricbarrier-discharge(AP-DBD)plasmas,after the direct or indirect treatment of plants for growth promotion and disease control.We then discuss the special demands on the characteristics of the CAP sources for their applications in plant mutation breeding.An atmospheric and room temperature plasma(ARTP)jet generator with a large plasma irradiation area,a high enough concentration of chemically reactive species and a low gas temperature is designed for direct plant mutagenesis.Experimental measurements of the electrical,thermal and optical features of the ARTP generator are conducted.Then,an ARTP-P(ARTP for plant mutagenesis)mutation breeding machine is developed,and a typical case of plant mutation breeding by the ARTP-P mutation machine is presented using Coreopsis tinctoria Nutt.seeds.Physical and agricultural experiments show that the newly-developed ARTP-P mutation breeding machine with a large irradiation area can generate uniform CAP jets with high concentrations of chemically reactive species and mild gas temperatures,and have signiflcant mutagenesis effects on the Coreopsis tinctoria Nutt.seeds.The ARTP-P mutation breeding machine may provide a platform for systematic studies on mutation mechanisms and results for various plant seeds under different operating conditions in future research.展开更多
Background:Sucking insect pests cause severe damage to cotton crop production.The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses.Considering the r...Background:Sucking insect pests cause severe damage to cotton crop production.The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses.Considering the role of morphological and biochemical host plant resista nee(HPR)traits in plant defense,12 cotton genotypes/varieties were evaluated for leaf area,leaf glanding,total soluble sugars,total soluble proteins,total phenolics,tannin and total flavonoids against fluctuating populations of whitefly,thrips and jassid under field conditions.Results:The population of these insects fluctuated during the growing seas on and remained above threshold level(whitefly>5,thrips>(8-10)f or jassid>1 per leaf)during late June and early July.Strong and negative association of whitefly(r=-0.825)and jassid(r=-0.929)with seed cotton yield was observed.Mean population of insects were the highest in Glandless-1 followed by NIA-82 and NIA-M30.NIAB-Kiran followed by NI AB-878 and Sadori were the most resistant,with the mean population of 1.41,1.60,1.66(whitefly);2.24,232,2.53(thrips)and 037,0.31,036(jassid),respectively.The resistant variety NIAB-Kiran showed less soluble sugars(8.54 mg.g^(-1)),soluble proteins(27.11 mg.g^(-1))and more phenolic(36.56 mg.g^(-1))and flavonoids(13.10mg.g^(-1))as compared with the susceptible check Glandless-1.Moreover,all insect populations were positively correlated with total soluble sugars and proteins.Whitefly populations exhibited negative response to leaf gossypol glands,total phenolics,tannins and flavonoids.The thrips and jassid populations had a significant and negative correlation with these four biochemical HPR traits.Conclusion:The ide ntified resistant resources and HPR traits can be deployed against sucking in sect pests'complex in future breeding programs of developing insect resistant cotton varieties.展开更多
Vegetables and fruits are grown worldwide and play an important role in human diets because they provide vitamins, minerals, dietary fiber, and phytochemicals. Vegetables and fruits are also associated with improvemen...Vegetables and fruits are grown worldwide and play an important role in human diets because they provide vitamins, minerals, dietary fiber, and phytochemicals. Vegetables and fruits are also associated with improvement of gastrointestinal health, good vision, and reduced risk of heart disease, stroke, chronic diseases such as diabetes, and some forms of cancer. Vegetable and fruit production suffers from many biotic stresses caused by pathogens, pests, and weeds and requires high amounts of plant protection products per hectare. United States vegetables farmers are benefiting from growing transgenic squash cultivars resistant to Zucchini yellow mosaic virus, Watermelon mosaic virus, and Cucumber mosaic virus, which were deregulated and commercialized since 1996. Bt-sweet corn has also proven effective for control of some lepidopteran species and continues to be accepted in the fresh market in the USA, and Bt-fresh-market sweet corn hybrids are released almost every year. Likewise, transgenic Bt-eggplant bred to reduce pesticide use is now grown by farmers in Bangladesh. Transgenic papaya cultivars carrying the coat-protein gene provide effective protection against Papaya ring spot virus elsewhere. The transgenic “Honey Sweet” plum cultivar provides an interesting germplasm source for Plum pox virus control. Enhanced host plant resistance to Xanthomonas campestris pv. musacearum, which causes the devastating banana Xanthomonas wilt in the Great Lakes Region of Africa, was achieved by plant genetic engineering. There are other vegetable and fruit crops in the pipeline that have been genetically modified to enhance their host plant resistance to insects and plant pathogens, to show herbicide tolerance, and to improve features such as slow ripening that extends the shelf-life of the produce. Consumers could benefit further from eating more nutritious transgenic vegetables and fruits. Transgenic plant breeding therefore provides genetically enhanced seed embedded technology that contributes to integrated pest management in horticulture by reducing pesticide sprays as well as improving food safety by minimizing pesticide residues. Furthermore, herbicide-tolerant transgenic crops can help reducing plough in fields, thereby saving fuel because of less tractor use, which also protects the structure of the soil by reducing its erosion. Transgenic vegetable and fruit crops could make important contributions to sustainable vegetable production and for more nutritious and healthy food. Countries vary, however, in their market standards of acceptance of transgenic crops. Biotechnology products will be successful if clear advantages and safety are demonstrated to both growers and consumers.展开更多
Rice is the staple food for more than half of the world population. The utilization of the wild abortive cytoplasmic male sterility (CMS) in 1970s has significantly raised rice yield potential. But the world's annu...Rice is the staple food for more than half of the world population. The utilization of the wild abortive cytoplasmic male sterility (CMS) in 1970s has significantly raised rice yield potential. But the world's annual rice production will have to increase 70 percent over the next 30 years, to keep up with the demends of the growing population.展开更多
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement.Developmental regulators control the balance and rate of cell divisions within the m...Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement.Developmental regulators control the balance and rate of cell divisions within the meristem.Altering these regulators impacts meristem architecture and,as a consequence,plant form.In this review,we discuss genes involved in regulating the shoot apical meristem,inflorescence meristem,axillary meristem,root apical meristem,and vascular cambium in plants.We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns.Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible.We discuss recent advances on plant transformation made possible by studying genes controlling meristem development.Finally,we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.展开更多
Root system architecture(RSA)plays a pivotal role in efficient uptake of essential nutrients,such as phosphorous(P),nitrogen(N),and water In soils with heterogeneous nutrient distribution,root plasticity can optimize ...Root system architecture(RSA)plays a pivotal role in efficient uptake of essential nutrients,such as phosphorous(P),nitrogen(N),and water In soils with heterogeneous nutrient distribution,root plasticity can optimize acquisition and plant growth.Here,we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions.Our studies,using P efficient SC103 and inefficient BTx635 sorghum cultivars,identified significant differences in root traits,with SC103 developing a larger root system with more and longer lateral roots,and enhanced shoot biomass,under both nutrient sufficient and deficient conditions.In addition to this constitutive attribute,under P deficiency,both cultivars exhibited an initial increase in lateral root development;however,SC103 still maintained the larger root biomass.Although N deficiency and drought stress inhibited both root and shoot growth,for both sorghum cultivars,SC103 again maintained the better performance.These findings reveal that SC103,a P efficient sorghum cultivar,also exhibited enhanced growth performance under N deficiency and drought.Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient-and drought-resilient crops.展开更多
The development, distribution and features of one hundred and forty botanical gardens (BGs) in China are reported and their functions on research, conservation, display and utilization of biodiversity are summarized i...The development, distribution and features of one hundred and forty botanical gardens (BGs) in China are reported and their functions on research, conservation, display and utilization of biodiversity are summarized in this paper. The contributions to the social and economic development in the early stage of Chinese BGs with the researches of economic plant (tobacco), medicinal plant (yam) and wild fruit tree resources are evaluated. The theoretical and applied achievements in recent years in seed science, plant conservation, economic plant introduction, acclimatization and breeding are also described. A general scope of living plant collections in Chinese BGs is presented and the outstanding ones, including Magnoliaceae, Zingiberaceae, Cycadaceae, medicinal plants, Actinidia and Rhododendron are particularly mentioned. With special reference to Chinese penjing art garden and silicified wood garden, the development of scientific popularization and tourism in BGs is reviewed.展开更多
[Objective] The aim was to research production model of recycling agricul- ture. [Method] The production model of recycling agriculture integrating planting and breeding was explored on basis of pig raising, and maize...[Objective] The aim was to research production model of recycling agricul- ture. [Method] The production model of recycling agriculture integrating planting and breeding was explored on basis of pig raising, and maize and peanut planting, with consideration of existing problems of planting and breeding integration in China. [Result] Ecological and economic benefits of pig farms and planting bases increased significantly, and all indices improved in different degrees. [Conclusion] The research provides valuable references for pig raising in China.展开更多
The hybrid growth of rapeseed now has reached to 4.7×106hm2,accounting for 70 % of total rapeseed growth area in China. Over the last 40 years,the researches and utilizations of hybrid rapeseed in China have sign...The hybrid growth of rapeseed now has reached to 4.7×106hm2,accounting for 70 % of total rapeseed growth area in China. Over the last 40 years,the researches and utilizations of hybrid rapeseed in China have significantly contributed to the development of rapeseed industry in China. The production of hybrid rapeseed mainly utilizes cytoplasmic male sterility(CMS),combined at the same time with nuclear male sterility and other pollinating-control systems in China. The hybrid rapeseed studies in China are also characterized by the improvement of quality and oil content in hybrid breeding. Future studies to enhance the heterosis of rapeseed will be focused on several important issues,including the combination of heterosis and ideotype breeding,further increase of oil content in hybrids,utilization of sub-genomic heterosis and resistance improvement. The paper will discuss the following perspectives in hybrid rapeseed studies:relationships among heterosis,quality and disease traits,solutions for excessive source and pool in hybrids compared with open-pollinated cultivars,and the importance of increasing harvest index of hybrids to achieve a better yield in hybrids.展开更多
Plant breeding is well recognized as one of the most important means to meet food security challenges caused by the ever-increasing world population. During the past three decades, plant breeding has been empowered by...Plant breeding is well recognized as one of the most important means to meet food security challenges caused by the ever-increasing world population. During the past three decades, plant breeding has been empowered by both new knowledge on trait development and regulation(e.g., functional genomics) and new technologies(e.g., biotechnologies and phenomics). Gene editing, particularly by clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas) and its variants, has become a powerful technology in plant research and may become a game-changer in plant breeding. Traits are conferred by coding and non-coding genes. From this perspective, we propose different editing strategies for these two types of genes. The activity of an encoded enzyme and its quantity are regulated at transcriptional and post-transcriptional, as well as translational and post-translational, levels. Different strategies are proposed to intervene to generate gene functional variations and consequently phenotype changes. For non-coding genes, trait modification could be achieved by regulating transcription of their own or target genes via gene editing. Also included is a scheme of protoplast editing to make gene editing more applicable in plant breeding. In summary, this review provides breeders with a host of options to translate gene biology into practical breeding strategies, i.e., to use gene editing as a mechanism to commercialize gene biology in plant breeding.展开更多
In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evapo...In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evaporation,the dynamics of soil salinization and salt-tolerant plant breeding.The impact of single environmental factors on plant isotope composition has been the focus of previous studies.However,the impact of multiple environmental factors on plant isotope composition remains unclear and needs to be carefully studied.In order to gain insights into soil salinization and amelioration,especially soil salinization in arid and semiarid areas,it is essential to employ stable isotope techniques and combine them with other methods,such as located field observation and remote sensing technology.展开更多
基金Supported by Gaoyou Demonstration and Extension Base of Modern Agricultural(Rice and Wheat)Industrial Technology System in Jiangsu(SXGC[2017]168)Funds for Independent Innovation of Jiangsu Province(CX17(2007),KF(17)1022)+1 种基金Key Research and Development Plan Project(BE2017332)Agricultural Standardization Pilot Project of Jiangsu Province([2017]46)~~
文摘Three big field projects, independent irrigation and drainage facilities, and a blocking net, which are auxiliary projects of a green planting and breeding pattern composed of rice and red swamp crawfish (Procambarus clarkii), spatial and temporal coupling technology of "planting rice in one season and breeding red swamp crawfish in three seasons", green fertilization technology, green prevention and control technology, control technology of water level, and throwing technology of bait in Lixiahe region of Jiangsu Province were introduced successively, which can provide technical support for the development of ecological planting and breeding patterns and realization of green production in paddy fields.
基金financially supported by the National Natural Science Foundation of China(32272807 and U1703232)supported via project from State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2021ZZ-1)。
文摘Cotton (Gossypium hirsutum L.) is an importantfiber cash crop,but its root traits related to phosphorus (P) acquisition,including mycorrhizal root traits,are poorly understood.Eight cotton varieties bred in northwestern China that were released between 1950 and 2013 were grown in pots with or without one arbuscular mycorrhizal fungal (AMF) species(Funneliformis mosseae) at three P supply levels (0,50 and 300 mg P as KH_(2)PO_(4)kg^(-1)).Eleven root traits were measured and calculated after 7 wk of growth.The more recent accessions had smaller root diameters,acquired less P and produced less biomass,indicating an (inadvertent) varietal selection for thinner roots that provided less cortical space for AMF,which then increased the need for a high P fertilizer level.At the two lower P levels,the mycorrhizal plants acquired more P and produced more biomass than non-mycorrhizal plants (3.2 vs.0.9 mg P per plant;1.8 vs.0.9 g biomass per plant at P_(0);14.5 vs.1.7 mg P per plant;and 4.7 vs.1.6 g biomass per plant at P_(50)).At the highest P level,the mycorrhizal plants acquired more P than non-mycorrhizal plants (18.8 vs.13.4 mg per P plant),but there was no difference in biomass (6.2 vs.6.3 g per plant).At the intermediate P level,root diameter was significantly positively correlated with shoot biomass,P concentration and the P content of mycorrhizal plants.The results of our study support the importance of the outsourcing model of P acquisition in the root economics space framework.Inadvertent varietal selection in the last decades,resulting in thinner roots and a lower benefit from AMF,has led to a lower productivity of cotton varieties at moderate P supply (i.e.,when mycorrhizal,the average biomass of older varieties 5.0 g per plant vs.biomass of newer varieties 4.4 g per plant),indicating the need to rethink cotton breeding efforts in order to achieve high yields without very high P input.One feasible way to solve the problem of inadvertent varietal selection for cotton is to be aware of the trade-offs between the root do-it-yourself strategy and the outsourcing towards AMF strategy,and to consider both morphological and mycorrhizal root traits when breeding cotton varieties.
文摘This study analyzed the impact of participatory plant breeding (PPB) and participatory variety selection (PVS) on the adoption of improved sweetpotato varieties (ISPV) in central Uganda. The study quantitatively assessed how the two approaches influence farmers' uptake of the improved sweetpotato varieties and also determined other factors influencing this adoption. This was done by estimating a robust standard errors logit model. Both PPB and PVS positively and significantly influenced the likelihood of adoption of improved sweetpotato varieties at 5% and 10% levels, respectively. Other variables that positively influenced the adoption are extension services, training in sweetpotato production, farming experience, and off-farm income of the household. Farmers who participated in the plant breeding and variety selection processes were 37 and 6.7 times more likely to adopt the improved sweetpotato varieties than those who had not, respectively. Farmers who were trained specifically in sweetpotato production were 8.8 times more likely to adopt the improved varieties than those who had not received this type of training.
基金This work was supported by the Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia[Project No.GRANT805]the Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R318),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Appropriate knowledge of the parental cultivars is a pre-requisite for a successful breeding program.This study characterized fruit yield,quality attributes,and molecular variations of ten tomato cultivars during three consecutive generations under greenhouse conditions.Peto 86,Castle Rock,and Red Star cultivars showed the highest fruit yield(kg/plant),total phenolic compounds(TPC),and sap acidity.Principal component analysis categorized the evaluated fruit yield into three groups based on their quality attributes.A robust positive correlation appeared among traits inside each group.A positive correlation was likewise noticed between the first and the second groups.However,a negative correlation was detected between the first,the second and the third group.Molecular profiling,using seven inter-simple sequence repeat(ISSR)primers,produced 60 loci,including 49 polymorphic loci.The molecular analysis also pinpointed the highest genetic similarity(0.92)between P73 and Moneymaker,while the lowest genetic similarity(0.46)was observed between Castle Rock and Moneymaker.The cultivars P73 and Moneymaker showed the lowest genetic distance(2.24),while the highest genetic distance(5.92)was observed between Super Marmand and Peto86,on the one hand,and between Castle Rock and Moneymaker,on the other hand.The chemical analysis of fruit sap indicated the highest levels of TPC,total flavonoids,anthocyanin,ascorbic acid and total soluble solids in Peto 86 and Castle Rock cultivars.Phylogeny analysis of tomato cultivars based on morphological and molecular attributes indicated four distinct clades.Peto 86,Castle Rock,and Red star cultivars can be recommended for the tomato hybridization breeding programs in the future,with other tomato cultivars as potentially high-yielding parents.
基金financial assistance provided by the High-End Foreign Expert Recruitment Program(G2022051003L)National Natural Science Foundation of China(32201878)+3 种基金Hainan Yazhou Bay Seed Lab(B21HJ0215)Agricultural Science and Technology Innovation Program of CAAS(CAASZDRW202002,CAAS-ZDRW202201)Hebei Natural Science Foundation(C2021205013)Long Mao is also a“Yellow River Delta Scholar”in Sino-Agro Experimental Station for Salt Tolerant Crops(SAESSTC),Dongying,Shandong,China.
文摘Agrobacterium tumefaciens mediated plant transformation is a versatile tool for plant genetic engineering following its discovery nearly half a century ago.Numerous modifications were made in its application to increase efficiency,especially in the recalcitrant major cereals plants.Recent breakthroughs in transformation efficiency continue its role as a mainstream technique in CRISPR/Cas-based genome editing and gene stacking.These modifications led to higher transformation frequency and lower but more stable transgene copies with the capability to revolutionize modern agriculture.In this review,we provide a brief overview of the history of Agrobacterium-mediated plant transformation and focus on the most recent progress to improve the system in both the Agrobacterium and the host recipient.A promising future for transformation in biotechnology and agriculture is predicted.
基金supported by the Ministry of Higher Education(MoHE)Malaysia under the Fundamental Research Grant Scheme(No.FRGS/1/2021/SS0/UM/02/6)the Universiti Malaya Research University Grant(No.RU004A-2020).
文摘Biotechnology policies and regulations must be revised and updated to reflect the most recent advances in plantbreeding technology. New Plant Breeding Techniques(NPBT) such as gene editing have been applied to address the myriad of challenges in plant breeding, while the use of NPBT as emerging biotechnological tools raises legal and ethical concerns. This study aims to highlight how gene editing is operationalized in the existing literature and examine the critical issues of ethical and legal issues of gene editing for plant breeding. We carried out a systematic literature review(SLR) to provide the current states of ethical and legal discourses surrounding this topic. We also identified critical research priority areas and policy gaps that must be addressed when designing the future governance of gene editing in plant breeding.
基金supported by the National Key Research and Development Program of China(No.2016YFD0102106)National Natural Science Foundation of China(Nos.11475103,21627812)。
文摘Cold atmospheric plasmas(CAPs)have shown great applicability in agriculture.Many kinds of CAP sources have been studied in agricultural applications to promote plant growth and cure plant diseases.We briefly review the state-of-the-art stimulating effects of atmospheric-pressure dielectricbarrier-discharge(AP-DBD)plasmas,after the direct or indirect treatment of plants for growth promotion and disease control.We then discuss the special demands on the characteristics of the CAP sources for their applications in plant mutation breeding.An atmospheric and room temperature plasma(ARTP)jet generator with a large plasma irradiation area,a high enough concentration of chemically reactive species and a low gas temperature is designed for direct plant mutagenesis.Experimental measurements of the electrical,thermal and optical features of the ARTP generator are conducted.Then,an ARTP-P(ARTP for plant mutagenesis)mutation breeding machine is developed,and a typical case of plant mutation breeding by the ARTP-P mutation machine is presented using Coreopsis tinctoria Nutt.seeds.Physical and agricultural experiments show that the newly-developed ARTP-P mutation breeding machine with a large irradiation area can generate uniform CAP jets with high concentrations of chemically reactive species and mild gas temperatures,and have signiflcant mutagenesis effects on the Coreopsis tinctoria Nutt.seeds.The ARTP-P mutation breeding machine may provide a platform for systematic studies on mutation mechanisms and results for various plant seeds under different operating conditions in future research.
文摘Background:Sucking insect pests cause severe damage to cotton crop production.The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses.Considering the role of morphological and biochemical host plant resista nee(HPR)traits in plant defense,12 cotton genotypes/varieties were evaluated for leaf area,leaf glanding,total soluble sugars,total soluble proteins,total phenolics,tannin and total flavonoids against fluctuating populations of whitefly,thrips and jassid under field conditions.Results:The population of these insects fluctuated during the growing seas on and remained above threshold level(whitefly>5,thrips>(8-10)f or jassid>1 per leaf)during late June and early July.Strong and negative association of whitefly(r=-0.825)and jassid(r=-0.929)with seed cotton yield was observed.Mean population of insects were the highest in Glandless-1 followed by NIA-82 and NIA-M30.NIAB-Kiran followed by NI AB-878 and Sadori were the most resistant,with the mean population of 1.41,1.60,1.66(whitefly);2.24,232,2.53(thrips)and 037,0.31,036(jassid),respectively.The resistant variety NIAB-Kiran showed less soluble sugars(8.54 mg.g^(-1)),soluble proteins(27.11 mg.g^(-1))and more phenolic(36.56 mg.g^(-1))and flavonoids(13.10mg.g^(-1))as compared with the susceptible check Glandless-1.Moreover,all insect populations were positively correlated with total soluble sugars and proteins.Whitefly populations exhibited negative response to leaf gossypol glands,total phenolics,tannins and flavonoids.The thrips and jassid populations had a significant and negative correlation with these four biochemical HPR traits.Conclusion:The ide ntified resistant resources and HPR traits can be deployed against sucking in sect pests'complex in future breeding programs of developing insect resistant cotton varieties.
文摘Vegetables and fruits are grown worldwide and play an important role in human diets because they provide vitamins, minerals, dietary fiber, and phytochemicals. Vegetables and fruits are also associated with improvement of gastrointestinal health, good vision, and reduced risk of heart disease, stroke, chronic diseases such as diabetes, and some forms of cancer. Vegetable and fruit production suffers from many biotic stresses caused by pathogens, pests, and weeds and requires high amounts of plant protection products per hectare. United States vegetables farmers are benefiting from growing transgenic squash cultivars resistant to Zucchini yellow mosaic virus, Watermelon mosaic virus, and Cucumber mosaic virus, which were deregulated and commercialized since 1996. Bt-sweet corn has also proven effective for control of some lepidopteran species and continues to be accepted in the fresh market in the USA, and Bt-fresh-market sweet corn hybrids are released almost every year. Likewise, transgenic Bt-eggplant bred to reduce pesticide use is now grown by farmers in Bangladesh. Transgenic papaya cultivars carrying the coat-protein gene provide effective protection against Papaya ring spot virus elsewhere. The transgenic “Honey Sweet” plum cultivar provides an interesting germplasm source for Plum pox virus control. Enhanced host plant resistance to Xanthomonas campestris pv. musacearum, which causes the devastating banana Xanthomonas wilt in the Great Lakes Region of Africa, was achieved by plant genetic engineering. There are other vegetable and fruit crops in the pipeline that have been genetically modified to enhance their host plant resistance to insects and plant pathogens, to show herbicide tolerance, and to improve features such as slow ripening that extends the shelf-life of the produce. Consumers could benefit further from eating more nutritious transgenic vegetables and fruits. Transgenic plant breeding therefore provides genetically enhanced seed embedded technology that contributes to integrated pest management in horticulture by reducing pesticide sprays as well as improving food safety by minimizing pesticide residues. Furthermore, herbicide-tolerant transgenic crops can help reducing plough in fields, thereby saving fuel because of less tractor use, which also protects the structure of the soil by reducing its erosion. Transgenic vegetable and fruit crops could make important contributions to sustainable vegetable production and for more nutritious and healthy food. Countries vary, however, in their market standards of acceptance of transgenic crops. Biotechnology products will be successful if clear advantages and safety are demonstrated to both growers and consumers.
基金The study was supported by Hi-tech Research and Development Project of China (No. 2004AA211142), National Natural Science Foundation of China (No. 30270819). The development of source materials used in the study was supported by the Rockefeller Foundation.
文摘Rice is the staple food for more than half of the world population. The utilization of the wild abortive cytoplasmic male sterility (CMS) in 1970s has significantly raised rice yield potential. But the world's annual rice production will have to increase 70 percent over the next 30 years, to keep up with the demends of the growing population.
基金supported by funding from National Science Foundation award 2129189,USDA-NIFA award 2020-67013-30909the NSF Postdoctoral Research Fellowships in Biology Program under grant 2010642the NSF Postdoctoral Research Fellowships in Biology Program under grant 2209124。
文摘Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement.Developmental regulators control the balance and rate of cell divisions within the meristem.Altering these regulators impacts meristem architecture and,as a consequence,plant form.In this review,we discuss genes involved in regulating the shoot apical meristem,inflorescence meristem,axillary meristem,root apical meristem,and vascular cambium in plants.We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns.Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible.We discuss recent advances on plant transformation made possible by studying genes controlling meristem development.Finally,we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
文摘Root system architecture(RSA)plays a pivotal role in efficient uptake of essential nutrients,such as phosphorous(P),nitrogen(N),and water In soils with heterogeneous nutrient distribution,root plasticity can optimize acquisition and plant growth.Here,we present evidence that a constitutive RSA can confer benefits for sorghum grown under both sufficient and limiting growth conditions.Our studies,using P efficient SC103 and inefficient BTx635 sorghum cultivars,identified significant differences in root traits,with SC103 developing a larger root system with more and longer lateral roots,and enhanced shoot biomass,under both nutrient sufficient and deficient conditions.In addition to this constitutive attribute,under P deficiency,both cultivars exhibited an initial increase in lateral root development;however,SC103 still maintained the larger root biomass.Although N deficiency and drought stress inhibited both root and shoot growth,for both sorghum cultivars,SC103 again maintained the better performance.These findings reveal that SC103,a P efficient sorghum cultivar,also exhibited enhanced growth performance under N deficiency and drought.Our results provide evidence that this constitutive nature of RSA can provide an avenue for breeding nutrient-and drought-resilient crops.
文摘The development, distribution and features of one hundred and forty botanical gardens (BGs) in China are reported and their functions on research, conservation, display and utilization of biodiversity are summarized in this paper. The contributions to the social and economic development in the early stage of Chinese BGs with the researches of economic plant (tobacco), medicinal plant (yam) and wild fruit tree resources are evaluated. The theoretical and applied achievements in recent years in seed science, plant conservation, economic plant introduction, acclimatization and breeding are also described. A general scope of living plant collections in Chinese BGs is presented and the outstanding ones, including Magnoliaceae, Zingiberaceae, Cycadaceae, medicinal plants, Actinidia and Rhododendron are particularly mentioned. With special reference to Chinese penjing art garden and silicified wood garden, the development of scientific popularization and tourism in BGs is reviewed.
基金Supported by Jiangsu Agriculture Science and Technology Innovation Fund(JASTIF)[CX(11)2037]~~
文摘[Objective] The aim was to research production model of recycling agricul- ture. [Method] The production model of recycling agriculture integrating planting and breeding was explored on basis of pig raising, and maize and peanut planting, with consideration of existing problems of planting and breeding integration in China. [Result] Ecological and economic benefits of pig farms and planting bases increased significantly, and all indices improved in different degrees. [Conclusion] The research provides valuable references for pig raising in China.
文摘The hybrid growth of rapeseed now has reached to 4.7×106hm2,accounting for 70 % of total rapeseed growth area in China. Over the last 40 years,the researches and utilizations of hybrid rapeseed in China have significantly contributed to the development of rapeseed industry in China. The production of hybrid rapeseed mainly utilizes cytoplasmic male sterility(CMS),combined at the same time with nuclear male sterility and other pollinating-control systems in China. The hybrid rapeseed studies in China are also characterized by the improvement of quality and oil content in hybrid breeding. Future studies to enhance the heterosis of rapeseed will be focused on several important issues,including the combination of heterosis and ideotype breeding,further increase of oil content in hybrids,utilization of sub-genomic heterosis and resistance improvement. The paper will discuss the following perspectives in hybrid rapeseed studies:relationships among heterosis,quality and disease traits,solutions for excessive source and pool in hybrids compared with open-pollinated cultivars,and the importance of increasing harvest index of hybrids to achieve a better yield in hybrids.
基金Project supported by the Zhejiang Provincial S&T Project on Breeding Agricultural(Food)Crops(No.2016C02050-2)the National Natural Science Foundation of China(No.31701394)。
文摘Plant breeding is well recognized as one of the most important means to meet food security challenges caused by the ever-increasing world population. During the past three decades, plant breeding has been empowered by both new knowledge on trait development and regulation(e.g., functional genomics) and new technologies(e.g., biotechnologies and phenomics). Gene editing, particularly by clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein(Cas) and its variants, has become a powerful technology in plant research and may become a game-changer in plant breeding. Traits are conferred by coding and non-coding genes. From this perspective, we propose different editing strategies for these two types of genes. The activity of an encoded enzyme and its quantity are regulated at transcriptional and post-transcriptional, as well as translational and post-translational, levels. Different strategies are proposed to intervene to generate gene functional variations and consequently phenotype changes. For non-coding genes, trait modification could be achieved by regulating transcription of their own or target genes via gene editing. Also included is a scheme of protoplast editing to make gene editing more applicable in plant breeding. In summary, this review provides breeders with a host of options to translate gene biology into practical breeding strategies, i.e., to use gene editing as a mechanism to commercialize gene biology in plant breeding.
基金supported by the National Basic Research Program of China (2009CB825101)the National Natural Science Foundation of China (41071032)the West Light Foundation of the Chinese Academy of Sciences (2009)
文摘In this paper,we reviewed the progress in the application of stable isotope techniques to the study of soil salinization.As a powerful technique,stable isotopes have been widely used in the studies of soil water evaporation,the dynamics of soil salinization and salt-tolerant plant breeding.The impact of single environmental factors on plant isotope composition has been the focus of previous studies.However,the impact of multiple environmental factors on plant isotope composition remains unclear and needs to be carefully studied.In order to gain insights into soil salinization and amelioration,especially soil salinization in arid and semiarid areas,it is essential to employ stable isotope techniques and combine them with other methods,such as located field observation and remote sensing technology.