EV71-type virus is one of the main pathogens causing the occurrence of hand,foot and mouth disease(HFMD),and VP1 protein,a factor that directly determines the antigenicity of the virus,has been isolated.The tomato was...EV71-type virus is one of the main pathogens causing the occurrence of hand,foot and mouth disease(HFMD),and VP1 protein,a factor that directly determines the antigenicity of the virus,has been isolated.The tomato was selected as a bioreactor for the production of an edible EV71 vaccine designed for the VP1 capsid protein.Using molecular biology techniques,the fusion gene EV71-VP1 was cut from vector PGEX-4T-2,a vector containing the p2300-EV71 gene with CaMV35S promoter and TL regulatory elements was constructed,and the hypocotyl and cotyledons of tomato were transformed using Agrobacterium(EHA105)-mediated method,screened,elongated and rooted,and finally 20 resistant tomato plants were obtained.Five transgenic positive seedlings were obtained by digestion and PCR assay,among which three plants were detected by RT-PCR to be capable of transcriptional translation at the RNA level.The experimental results aimed to explore new material support for the preparation of transgenic plant oral vaccines against EV71 infection and provide a theoretical basis for accelerating the development of transgenic plant vaccines in the future.展开更多
ObjectiveThis study aimed to construct plant expression vector for recombinant human epidermal growth factor (hEGF) and further to provide a basis for the expression of hEGF in peanut hairy root system. MethodAccord...ObjectiveThis study aimed to construct plant expression vector for recombinant human epidermal growth factor (hEGF) and further to provide a basis for the expression of hEGF in peanut hairy root system. MethodAccording to the hEGF sequence in GenBank, hEGF was synthesized artificially; subsequently, hEGF gene was ligated with green fluorescent protein (GFP) gene, and their ligation product was then amplified with primers flanked with corresponding endonuclease cleavage sites, followed by double digestion by Sal I and EcoR I of the amplified products; next, pRI 101 AN DNA was extracted and digested by both Sal I and EcoR I; susequently, the digestion products of hEGF and GFP ligation fragment by Sal I and EcoR I and the digestion products of pRI 101 AN plasmid DNA by Sal I and EcoR I were ligated, and their ligation product was transformed into Escherichia coli XL10-Gold, followed by extraction of DNA from the recombinants exhibiting green fluorescence, which was then identified by enzymatic digestion and PCR, and the verified recombinant plasmid DNA was named pBZG101. ResultHuman epidermal growth factor gene (hEGF) and green fluorescent protein gene (GFP) were successfully ligated, and their ligation fragment was successfully ligated to pRI 101 AN DNA, finally with the acquirement of the plant expression vector for recombinant human epidermal growth factor-(pBZG101). ConclusionThe plant expression vector for recombinant human epidermal growth factor-(pBZG101)- was successfully constructed in this study.展开更多
[Objective] The aim was to clone H6H gene from Atropa belladonna and construct an efficient plant expression vector.[Method] The coding sequence of H6H(Hyoscyamine 6β-hydroxylase)was cloned from Atropa belladonna w...[Objective] The aim was to clone H6H gene from Atropa belladonna and construct an efficient plant expression vector.[Method] The coding sequence of H6H(Hyoscyamine 6β-hydroxylase)was cloned from Atropa belladonna with RT-PCR.Then,the sequence was subcloned into the reconstructed plant binary expression vector p2301 to construct the recombinant vector p2301-H6H,which was then introduced into Agrobacterium tumefaciens strain LBA4404 and Agrobacterium rhizogenes strain C58C1,respectively.[Result] The engineering bacteria p2301-H6H-LBA4404 and p2301-H6H-C58C1 which could be directly used in genetic improvement were obtained.[Conclusion] The present research provided basis for the increasing of alkaloid content of Atropa belladonna by plant genetic engineering technology.展开更多
[ Objective] The study was to report the construction of plant virus expression vector pCIYVV/CP/W and the expression of green fluorescent protein(GFP) with pCIYVV/CP/W, and to develop effective plat virus vector fo...[ Objective] The study was to report the construction of plant virus expression vector pCIYVV/CP/W and the expression of green fluorescent protein(GFP) with pCIYVV/CP/W, and to develop effective plat virus vector for plant bioreactor to produce useful protein. [ Method] A section of multiple cloning sites among NIb/CP genes in pCIYVV genome and deoxyribonucleotide polylinker of cleavage recognition sequence containing viral protease Nla were cloned with infectivity full-length cDNA of clover yellow vein virus (CIYVV), and pCIYVV/CP/W vector was constructed, GFP gene was inserted into pCIyVV/CP/W to construct the pCIYVV/CP/W/GFP vector. The transcription situation of recombinant virus clone was detected by RT-PCR, and targeted gene products expressed by recombinant virus clone were detected with western blot (WB). [Result] The broad bean seedling inoculated with pCIYVV/CP/W/GFP expressed the same symptom as wild type CIYVV, morbidity was of 100%, the result showed that recombinant virus clone pCIYVV/CP/W/GFP didn't suppress, insertion of foreign gene didn't destroy the open reading frame of pCIYVV/CP/W. Foreign gene can keep living in F, progeny virus genorne steadily, recombinant virus clone pCIYVV/CP/W/GFP could steadily express GFP in progeny virus at least.[ Conclusion] The useful plant virus vector was provided for useful protein expressing.展开更多
We have developed a 'double T-DNA' binary vector system for generating selectable marker-free transgenic plants by Agrobacterium-mediated transformation. The 'double T-DNA' binary vector pDLBRBbarm whi...We have developed a 'double T-DNA' binary vector system for generating selectable marker-free transgenic plants by Agrobacterium-mediated transformation. The 'double T-DNA' binary vector pDLBRBbarm which carried two independent T-DNAs, one containing a selectable marker neomycin phosphotransferase (nptII) gene and the other a bargene, was constructed. Transgenic tobacco (Nicotiana tabacum L.) plants were then produced by Agrobacterium-mediated transformation with this vector. Frequency of the primary transformants co-integrated with npt II gene and bar gene was 59.2%. Segregation of two T-DNA regions was found in 3 out of 4 T-1 lines from co-transformed T-0 plants with nptII and bar PPT-resistant and kanamycin-sensitive plants were in approximate 19.5% of the T-1 plants. The result indicated that this 'double T-DNA' vector system could be a workable approach to generate transgenic plants free from selectable marker genes. Co-transformation of nptII gene and bar gene to plants with mixtures of Agrobacterium tumefaciens strains containing single T-DNA vectors was also tested. Frequency of co-transformed plants was 20.0%-47.7% and relatively low as compared with that of 'double T-DNA' vector system.展开更多
[Objective] The aim was to clone CBF3 gene from Arabidopsis thaliana and construct plant expression vector pCAMBIA1301-Rd29A-CBF3.[Method] CBF3 gene and stress-inducible promoter Rd29A were amplified from the genomic ...[Objective] The aim was to clone CBF3 gene from Arabidopsis thaliana and construct plant expression vector pCAMBIA1301-Rd29A-CBF3.[Method] CBF3 gene and stress-inducible promoter Rd29A were amplified from the genomic DNA of A.thaliana for the construction of plant expression vector.[Result] Sequencing results showed that the cloned CBF3 gene had 750 bp,and showed 100% identity with the sequence published on GenBank.The promoter Rd29A had 1 425 bp,and showed 100% identity with the sequence published on GenBank.[Conclusion] Based on the binary vector pCAMBIA1301,the plant expression vector pCAMBIA1301-Rd29A-CBF3 was constructed successfully,which could materially improve the salt resistance,drought-tolerance,cold resistance of plants.展开更多
We are associating the solutions of stochastic and deterministic vector borne plant disease model in this manuscript.The dynamics of plant model depends upon threshold number P^(∗).If P^(∗)<1 then condition helpful...We are associating the solutions of stochastic and deterministic vector borne plant disease model in this manuscript.The dynamics of plant model depends upon threshold number P^(∗).If P^(∗)<1 then condition helpful to eradicate the disease in plants while P^(∗)>1 explains the persistence of disease.Inappropriately,standard numerical systems do not behave well in certain scenarios.We have been proposed a structure preserving stochastic non-standard finite difference system to analyze the behavior of model.This system is dynamical consistent,positive and bounded as defined by Mickens.展开更多
Given the sequence of Chs gene promoter from Arabidopsis thaliana reported in GenBank (AF248988), a pair of specific PCR primers was designed with the Primer Premier 5.0 software. PCR products of about 0.5 kb were s...Given the sequence of Chs gene promoter from Arabidopsis thaliana reported in GenBank (AF248988), a pair of specific PCR primers was designed with the Primer Premier 5.0 software. PCR products of about 0.5 kb were successfully amplified with the genome DNA of A. thaliana as a DNA template and Taq polymerase as DNA polymerase. The purified PCR products were ligated to the pMD18-T vector. The sequencing result showed that the Chs promoter from A. thaliana was 531 bp long. Sequence alignment analysis based on the DNAMAN software revealed that the sequence similarity between the cloned promoter and target promoter (AF248988) was up to 100%. Online PLACE analysis indicated that the Chs promoter contained cis-elements such as TATA-box, CAAT-box, pollen-box, G-box, ACGT-containing element, R response element, Myb recognition element and TACPyAT-box. At the same time, a plant expression vectorpAtChs::GUS which fused the Chs promoter and the marker gene GUS was successfully constructed.展开更多
A full-length cDNA sequence of xyloglucan endotransglycosylase gene (XET), abundantly expressed in the cambium of Anthocephalus chinensis was cloned by conserved PCR, rapid-amplification of cDNA ends and by chromoso...A full-length cDNA sequence of xyloglucan endotransglycosylase gene (XET), abundantly expressed in the cambium of Anthocephalus chinensis was cloned by conserved PCR, rapid-amplification of cDNA ends and by chromosome walking. Analytical results of the DNA sequence show that a 912 bp complete open reading frame (ORF) encoded a 303-amino acid protein was in the 1205 bp full cDNA sequence. The deduced amino acid sequence of AcXET, which contained the conserved specific EIDFE catalytic site sequence to XETs was homologous to the other known XET proteins. In order to study the gene function of AcXET and obtain transgenic plants, a plant expression vector pBIAcXET was constructed by recombinating the AcXET fragment from the cloning vector pMD19AcXET and the binary vector pBI121 between the XbaI and SmaI sites. The fragment ofAcXET gene was inserted between the CaMV 35S promotor and the coding region of the GUS gene in pBI121. The identification results show that the plant expression binary vector pBIAcXET was constructed successfully. These results lay the foundation for studying the molecular mechanism ofAcXET gene during wood formation.展开更多
The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6%...The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6% with the reported data. The coding region of oleic acid desaturase gene was then cloned from Arabidopsis thaliana. The sequencing analysis indicated that the sequence of the PCR product was just the same as reported before. In addition, the plant expression vector harboring the seed specific promoter and trans Fad2 gene was constructed.展开更多
This paper proposes a vector-borne plant disease model with discontinuous treatment strategies. Constructing Lyapunov function and applying non-smooth theory to analyze discontinuous differential equations, the basic ...This paper proposes a vector-borne plant disease model with discontinuous treatment strategies. Constructing Lyapunov function and applying non-smooth theory to analyze discontinuous differential equations, the basic reproductive number R0 is proved, which determines whether the plant disease will be extinct or not. If R0 R0 > 1 , there exists a unique endemic equilibrium which is globally stable. The numerical simulations are provided to verify our theoretical results, which indicate that after infective individuals reach some level, strengthening treatment measures is proved to be beneficial in controlling disease transmission.展开更多
[ Objective ] Heat shock factors (HSFs) are the major transcription factors of eukaryotic heat shock responses. This study aims to investigate the adversity stress tolerance functions of Arabidopsis heat shock facto...[ Objective ] Heat shock factors (HSFs) are the major transcription factors of eukaryotic heat shock responses. This study aims to investigate the adversity stress tolerance functions of Arabidopsis heat shock factor AtHsfAla, which has important significance for in-depth understanding of adversity stress tolerance mechanisms of plants and further utilization of heat shock factor genes. [Method] Genomic DNA of Arabidopsis was extracted with CTAB method and purified to obtain Arabidopsis DNA samples for in vitro site-specific recombination cloning ( Gateway cloning) to construct plant expression vector of heat shock factor AtHs- fAla. Firstly, donor vector pDONR 201/AtHsfAla was constructed based on attB and attP site-specific recombination method (BP reaction), to identify E. coli transformants harboring correct sequence of AtHsfAla by sequencing; secondly, plant expression vector pBTWG2/AttlsfAla overexpressing Arabidopsis heat shock factor AtHsfAla was constructed based on attL and attR site-specific recombination method (LR reaction), to screen E. coli transformants harboring target plasmid. [ Result] Plant expression vector of Arabidopsis heat shock factor gene AtHsfAla was constructed successfully. [ Conclusion] This study not only provided experimental materials for acquiring transgenic plants overexpressing heat shock transcription factor AtHsfAla, but also laid the foundation for further investigation of the diversity of adversity stress tolerance functions reanlated by HSFs.展开更多
[Objective] This study was conducted to clone and analyze ERECTA-LIKE1 gene in Zea mays by PCR and bioinformatics methods and to construct plant expression vector p Cambia3301-zm ERECTA-LIKE1. [Method] zm ERECTA-LIKE1...[Objective] This study was conducted to clone and analyze ERECTA-LIKE1 gene in Zea mays by PCR and bioinformatics methods and to construct plant expression vector p Cambia3301-zm ERECTA-LIKE1. [Method] zm ERECTA-LIKE1(zm ERL1)gene was obtained using RT-PCR, and physical-chemical properties were analyzed by bioinformatics methods, including domains,transmembrane regions, N-Glycosylation potential sites phosphorylation sites, and etc. [Result] Bioinformatics results showed that zm ERL1 gene was 2 169 bp, which encoded a protein consisting of 722 amino acids, 11 N-glycosylation potential sites and 42 kinase specific phosphorylation sites. According to CDD2.23 and TMHMM Server v. 2.0 software, there were leucine-rich repeats,a PKC domain and a transmembrane region in this protein. The theoretical p I and molecular weight of zm ERL1 encoded protein was 6.20 and 79 184.8 using Compute PI/Mw tool. Furthermore, we constructed the plant expression vector p Cambia3301-zm ERECTA-LIKE1 by subcloning zm ERL1 gene into p Cambia3301 instead of GUS. [Conclusion] The results provide a theoretical basis for the application of zm ERL1 gene in future study.展开更多
Plant height(PH)is a complex trait regulated by the environment and multiple genes.PH directly affects crop yield,harvest index,and lodging resistance.From plant dwarf mutants,many genes related to PH have been identi...Plant height(PH)is a complex trait regulated by the environment and multiple genes.PH directly affects crop yield,harvest index,and lodging resistance.From plant dwarf mutants,many genes related to PH have been identified and described.Nonetheless,the molecular mechanism of height regulation in high-culm rice mutants has not been well studied.By using transcriptome and weighted gene co-expression network analysis(WGCNA),we identified the differentially expressed genes(DEGs)between high-culm rice mutants(MUT)and wild-type(WT)and explored the key pathways and potential candidate genes involved in PH regulation.Transcriptome analysis identified a total of 2,184 DEGs,of which 1,317 were identified at the jointing stage and 1,512 were identified at the heading stage.Kyoto Encyclopedia of Genes and Genomes enrichment showed that the enrichment pathways were mainly involved in plant hormone signal transduction,ABC transportation,and steroid hormone biosynthesis.Among these metabolic pathways,LOC_Os05g43910 and LOC_Os01g35030 were auxin(IAA)-related genes,up-regulated in MUT and LOC_Os02g08500(LEPTO1),LOC_Os11g04720,and LOC_Os12g04500 were cytokinin(CK)-related genes,downregulated in MUT.The WGCNA identified four modules(light cyan,dark grey,grey,and pale turquoise)closely related to PH,and seven key genes were screened from these modules,of which two were up-regulated cell wallrelated genes(LOC_Os01g26174(OsWAK5),LOC_Os06g05050)in MUT,and one gibberellic acid(GA)gene(LOC_Os06g37364,OsKO2)was also up-regulated.These genes might be closely related to PH regulation.These findings help us better understand the transcriptional regulation of rice plant growth and development and provide a theoretical basis for mapping and cloning the PH regulatory genes.展开更多
Soybean pests are one of the major factors limiting yield improvement.With the expansion of area and changes in cropping patterns,a number of new pests have been identified in the main soybean production areas of Chin...Soybean pests are one of the major factors limiting yield improvement.With the expansion of area and changes in cropping patterns,a number of new pests have been identified in the main soybean production areas of China.The common brown leafhopper,Orosius orientalis,is a new pest associated with soybean stay-green virus that has been discovered on cultivated soybean crop in the Yellow-Huai-hai region of China in recent years.The polyphagous insect has a wide feeding range and infests a variety of important grain and cash crops.This paper presents the basic information,geographical distribution,hosts,damage characteristics,plant virus transmission,occurrence patterns,and prevention and control measures O.orientalis.This review also provides insights into integrated prevention and control of the genus Orosius as an insect vector.展开更多
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2021C032)。
文摘EV71-type virus is one of the main pathogens causing the occurrence of hand,foot and mouth disease(HFMD),and VP1 protein,a factor that directly determines the antigenicity of the virus,has been isolated.The tomato was selected as a bioreactor for the production of an edible EV71 vaccine designed for the VP1 capsid protein.Using molecular biology techniques,the fusion gene EV71-VP1 was cut from vector PGEX-4T-2,a vector containing the p2300-EV71 gene with CaMV35S promoter and TL regulatory elements was constructed,and the hypocotyl and cotyledons of tomato were transformed using Agrobacterium(EHA105)-mediated method,screened,elongated and rooted,and finally 20 resistant tomato plants were obtained.Five transgenic positive seedlings were obtained by digestion and PCR assay,among which three plants were detected by RT-PCR to be capable of transcriptional translation at the RNA level.The experimental results aimed to explore new material support for the preparation of transgenic plant oral vaccines against EV71 infection and provide a theoretical basis for accelerating the development of transgenic plant vaccines in the future.
基金Supported by the Shangdong Natural Science Foundation(ZR2010HQ054)the Ministry of Agriculture Opening Project Fund of Key Laboratory of Rubber Biology/State Key Laboratory Breeding Base of Cultivation&Physiology for Tropical Crops(KLOF1106)the Special Fund for Backbone Teachers and Domestic Visiting Scholars of Shandong Higher Education Institutions9~~
文摘ObjectiveThis study aimed to construct plant expression vector for recombinant human epidermal growth factor (hEGF) and further to provide a basis for the expression of hEGF in peanut hairy root system. MethodAccording to the hEGF sequence in GenBank, hEGF was synthesized artificially; subsequently, hEGF gene was ligated with green fluorescent protein (GFP) gene, and their ligation product was then amplified with primers flanked with corresponding endonuclease cleavage sites, followed by double digestion by Sal I and EcoR I of the amplified products; next, pRI 101 AN DNA was extracted and digested by both Sal I and EcoR I; susequently, the digestion products of hEGF and GFP ligation fragment by Sal I and EcoR I and the digestion products of pRI 101 AN plasmid DNA by Sal I and EcoR I were ligated, and their ligation product was transformed into Escherichia coli XL10-Gold, followed by extraction of DNA from the recombinants exhibiting green fluorescence, which was then identified by enzymatic digestion and PCR, and the verified recombinant plasmid DNA was named pBZG101. ResultHuman epidermal growth factor gene (hEGF) and green fluorescent protein gene (GFP) were successfully ligated, and their ligation fragment was successfully ligated to pRI 101 AN DNA, finally with the acquirement of the plant expression vector for recombinant human epidermal growth factor-(pBZG101). ConclusionThe plant expression vector for recombinant human epidermal growth factor-(pBZG101)- was successfully constructed in this study.
基金Supported by Natural Science Foundation of Chongqing~~
文摘[Objective] The aim was to clone H6H gene from Atropa belladonna and construct an efficient plant expression vector.[Method] The coding sequence of H6H(Hyoscyamine 6β-hydroxylase)was cloned from Atropa belladonna with RT-PCR.Then,the sequence was subcloned into the reconstructed plant binary expression vector p2301 to construct the recombinant vector p2301-H6H,which was then introduced into Agrobacterium tumefaciens strain LBA4404 and Agrobacterium rhizogenes strain C58C1,respectively.[Result] The engineering bacteria p2301-H6H-LBA4404 and p2301-H6H-C58C1 which could be directly used in genetic improvement were obtained.[Conclusion] The present research provided basis for the increasing of alkaloid content of Atropa belladonna by plant genetic engineering technology.
基金Supported by Natural Science Foundation of Liaoning Province(20072122)Projects Funding of Liaoning Provincial Education Office(05L339)~~
文摘[ Objective] The study was to report the construction of plant virus expression vector pCIYVV/CP/W and the expression of green fluorescent protein(GFP) with pCIYVV/CP/W, and to develop effective plat virus vector for plant bioreactor to produce useful protein. [ Method] A section of multiple cloning sites among NIb/CP genes in pCIYVV genome and deoxyribonucleotide polylinker of cleavage recognition sequence containing viral protease Nla were cloned with infectivity full-length cDNA of clover yellow vein virus (CIYVV), and pCIYVV/CP/W vector was constructed, GFP gene was inserted into pCIyVV/CP/W to construct the pCIYVV/CP/W/GFP vector. The transcription situation of recombinant virus clone was detected by RT-PCR, and targeted gene products expressed by recombinant virus clone were detected with western blot (WB). [Result] The broad bean seedling inoculated with pCIYVV/CP/W/GFP expressed the same symptom as wild type CIYVV, morbidity was of 100%, the result showed that recombinant virus clone pCIYVV/CP/W/GFP didn't suppress, insertion of foreign gene didn't destroy the open reading frame of pCIYVV/CP/W. Foreign gene can keep living in F, progeny virus genorne steadily, recombinant virus clone pCIYVV/CP/W/GFP could steadily express GFP in progeny virus at least.[ Conclusion] The useful plant virus vector was provided for useful protein expressing.
文摘We have developed a 'double T-DNA' binary vector system for generating selectable marker-free transgenic plants by Agrobacterium-mediated transformation. The 'double T-DNA' binary vector pDLBRBbarm which carried two independent T-DNAs, one containing a selectable marker neomycin phosphotransferase (nptII) gene and the other a bargene, was constructed. Transgenic tobacco (Nicotiana tabacum L.) plants were then produced by Agrobacterium-mediated transformation with this vector. Frequency of the primary transformants co-integrated with npt II gene and bar gene was 59.2%. Segregation of two T-DNA regions was found in 3 out of 4 T-1 lines from co-transformed T-0 plants with nptII and bar PPT-resistant and kanamycin-sensitive plants were in approximate 19.5% of the T-1 plants. The result indicated that this 'double T-DNA' vector system could be a workable approach to generate transgenic plants free from selectable marker genes. Co-transformation of nptII gene and bar gene to plants with mixtures of Agrobacterium tumefaciens strains containing single T-DNA vectors was also tested. Frequency of co-transformed plants was 20.0%-47.7% and relatively low as compared with that of 'double T-DNA' vector system.
基金Supported by Cultivation for New Varieties of Genetically Modified Organisms Technology Projects(2008ZX08001-004)Key Projects of Nanjing Xiaozhuang University(2007NXY01)Natural ScienceFoundation for Jiangsu Province Universities(08KJD180011)~~
文摘[Objective] The aim was to clone CBF3 gene from Arabidopsis thaliana and construct plant expression vector pCAMBIA1301-Rd29A-CBF3.[Method] CBF3 gene and stress-inducible promoter Rd29A were amplified from the genomic DNA of A.thaliana for the construction of plant expression vector.[Result] Sequencing results showed that the cloned CBF3 gene had 750 bp,and showed 100% identity with the sequence published on GenBank.The promoter Rd29A had 1 425 bp,and showed 100% identity with the sequence published on GenBank.[Conclusion] Based on the binary vector pCAMBIA1301,the plant expression vector pCAMBIA1301-Rd29A-CBF3 was constructed successfully,which could materially improve the salt resistance,drought-tolerance,cold resistance of plants.
基金The first author thanks Prince Sultan University for supporting this paper through the research group Nonlinear Analysis Methods in Applied Mathematics(NAMAM),group number RG-DES-2017-01-17.
文摘We are associating the solutions of stochastic and deterministic vector borne plant disease model in this manuscript.The dynamics of plant model depends upon threshold number P^(∗).If P^(∗)<1 then condition helpful to eradicate the disease in plants while P^(∗)>1 explains the persistence of disease.Inappropriately,standard numerical systems do not behave well in certain scenarios.We have been proposed a structure preserving stochastic non-standard finite difference system to analyze the behavior of model.This system is dynamical consistent,positive and bounded as defined by Mickens.
基金supported by the National Natural Science Foundation of China (Grant No.30740013)the Key Laboratory for Genetics and Breeding in Forestry Trees and Ornamental Plants,Ministry of Education (03-05)
文摘Given the sequence of Chs gene promoter from Arabidopsis thaliana reported in GenBank (AF248988), a pair of specific PCR primers was designed with the Primer Premier 5.0 software. PCR products of about 0.5 kb were successfully amplified with the genome DNA of A. thaliana as a DNA template and Taq polymerase as DNA polymerase. The purified PCR products were ligated to the pMD18-T vector. The sequencing result showed that the Chs promoter from A. thaliana was 531 bp long. Sequence alignment analysis based on the DNAMAN software revealed that the sequence similarity between the cloned promoter and target promoter (AF248988) was up to 100%. Online PLACE analysis indicated that the Chs promoter contained cis-elements such as TATA-box, CAAT-box, pollen-box, G-box, ACGT-containing element, R response element, Myb recognition element and TACPyAT-box. At the same time, a plant expression vectorpAtChs::GUS which fused the Chs promoter and the marker gene GUS was successfully constructed.
基金supported by the National Natural Science Foundation of China (Grant No. 30901158)the Key Project of Chinese Ministry of Education (Grant No. 104243)
文摘A full-length cDNA sequence of xyloglucan endotransglycosylase gene (XET), abundantly expressed in the cambium of Anthocephalus chinensis was cloned by conserved PCR, rapid-amplification of cDNA ends and by chromosome walking. Analytical results of the DNA sequence show that a 912 bp complete open reading frame (ORF) encoded a 303-amino acid protein was in the 1205 bp full cDNA sequence. The deduced amino acid sequence of AcXET, which contained the conserved specific EIDFE catalytic site sequence to XETs was homologous to the other known XET proteins. In order to study the gene function of AcXET and obtain transgenic plants, a plant expression vector pBIAcXET was constructed by recombinating the AcXET fragment from the cloning vector pMD19AcXET and the binary vector pBI121 between the XbaI and SmaI sites. The fragment ofAcXET gene was inserted between the CaMV 35S promotor and the coding region of the GUS gene in pBI121. The identification results show that the plant expression binary vector pBIAcXET was constructed successfully. These results lay the foundation for studying the molecular mechanism ofAcXET gene during wood formation.
文摘The upstream regulatory region of a seed specific gene was isolated from the genomic DNA of Brassica napus by PCR amplification. The cloned fragment contained 1755 nucleotides, and shared a sequence homology of 99.6% with the reported data. The coding region of oleic acid desaturase gene was then cloned from Arabidopsis thaliana. The sequencing analysis indicated that the sequence of the PCR product was just the same as reported before. In addition, the plant expression vector harboring the seed specific promoter and trans Fad2 gene was constructed.
文摘This paper proposes a vector-borne plant disease model with discontinuous treatment strategies. Constructing Lyapunov function and applying non-smooth theory to analyze discontinuous differential equations, the basic reproductive number R0 is proved, which determines whether the plant disease will be extinct or not. If R0 R0 > 1 , there exists a unique endemic equilibrium which is globally stable. The numerical simulations are provided to verify our theoretical results, which indicate that after infective individuals reach some level, strengthening treatment measures is proved to be beneficial in controlling disease transmission.
基金Supported by National Natural Science Foundation of China(31060039,31260061)Natural Science Foundation of Yunnan Province(2010ZC163)+1 种基金Project of Kunming University(YJL11025)Fund for Key Discipline Construction of Kunming University
文摘[ Objective ] Heat shock factors (HSFs) are the major transcription factors of eukaryotic heat shock responses. This study aims to investigate the adversity stress tolerance functions of Arabidopsis heat shock factor AtHsfAla, which has important significance for in-depth understanding of adversity stress tolerance mechanisms of plants and further utilization of heat shock factor genes. [Method] Genomic DNA of Arabidopsis was extracted with CTAB method and purified to obtain Arabidopsis DNA samples for in vitro site-specific recombination cloning ( Gateway cloning) to construct plant expression vector of heat shock factor AtHs- fAla. Firstly, donor vector pDONR 201/AtHsfAla was constructed based on attB and attP site-specific recombination method (BP reaction), to identify E. coli transformants harboring correct sequence of AtHsfAla by sequencing; secondly, plant expression vector pBTWG2/AttlsfAla overexpressing Arabidopsis heat shock factor AtHsfAla was constructed based on attL and attR site-specific recombination method (LR reaction), to screen E. coli transformants harboring target plasmid. [ Result] Plant expression vector of Arabidopsis heat shock factor gene AtHsfAla was constructed successfully. [ Conclusion] This study not only provided experimental materials for acquiring transgenic plants overexpressing heat shock transcription factor AtHsfAla, but also laid the foundation for further investigation of the diversity of adversity stress tolerance functions reanlated by HSFs.
基金Supported by the Distinguished Young Scientists Project of Beijing(CIT&TCD201304096)Academic Degrees and Graduate Education Reform and Development Program of Beijing University of Agriculture(5056516002\016)
文摘[Objective] This study was conducted to clone and analyze ERECTA-LIKE1 gene in Zea mays by PCR and bioinformatics methods and to construct plant expression vector p Cambia3301-zm ERECTA-LIKE1. [Method] zm ERECTA-LIKE1(zm ERL1)gene was obtained using RT-PCR, and physical-chemical properties were analyzed by bioinformatics methods, including domains,transmembrane regions, N-Glycosylation potential sites phosphorylation sites, and etc. [Result] Bioinformatics results showed that zm ERL1 gene was 2 169 bp, which encoded a protein consisting of 722 amino acids, 11 N-glycosylation potential sites and 42 kinase specific phosphorylation sites. According to CDD2.23 and TMHMM Server v. 2.0 software, there were leucine-rich repeats,a PKC domain and a transmembrane region in this protein. The theoretical p I and molecular weight of zm ERL1 encoded protein was 6.20 and 79 184.8 using Compute PI/Mw tool. Furthermore, we constructed the plant expression vector p Cambia3301-zm ERECTA-LIKE1 by subcloning zm ERL1 gene into p Cambia3301 instead of GUS. [Conclusion] The results provide a theoretical basis for the application of zm ERL1 gene in future study.
基金supported by the National Natural Science Foundation of China(31760428,31860371,and 32060476)Guangxi Natural Science Foundation of China(2020GXNSFAA259041)+1 种基金Guangxi Science and Technology Project(Guike AB21238009)Guangxi Academy of Agricultural Sciences Foundation(2021JM04,JM49,YT030,QN-11,14,20,29,and 35).
文摘Plant height(PH)is a complex trait regulated by the environment and multiple genes.PH directly affects crop yield,harvest index,and lodging resistance.From plant dwarf mutants,many genes related to PH have been identified and described.Nonetheless,the molecular mechanism of height regulation in high-culm rice mutants has not been well studied.By using transcriptome and weighted gene co-expression network analysis(WGCNA),we identified the differentially expressed genes(DEGs)between high-culm rice mutants(MUT)and wild-type(WT)and explored the key pathways and potential candidate genes involved in PH regulation.Transcriptome analysis identified a total of 2,184 DEGs,of which 1,317 were identified at the jointing stage and 1,512 were identified at the heading stage.Kyoto Encyclopedia of Genes and Genomes enrichment showed that the enrichment pathways were mainly involved in plant hormone signal transduction,ABC transportation,and steroid hormone biosynthesis.Among these metabolic pathways,LOC_Os05g43910 and LOC_Os01g35030 were auxin(IAA)-related genes,up-regulated in MUT and LOC_Os02g08500(LEPTO1),LOC_Os11g04720,and LOC_Os12g04500 were cytokinin(CK)-related genes,downregulated in MUT.The WGCNA identified four modules(light cyan,dark grey,grey,and pale turquoise)closely related to PH,and seven key genes were screened from these modules,of which two were up-regulated cell wallrelated genes(LOC_Os01g26174(OsWAK5),LOC_Os06g05050)in MUT,and one gibberellic acid(GA)gene(LOC_Os06g37364,OsKO2)was also up-regulated.These genes might be closely related to PH regulation.These findings help us better understand the transcriptional regulation of rice plant growth and development and provide a theoretical basis for mapping and cloning the PH regulatory genes.
基金supported by the National Key Research and Development Program of China(2023YFD1401000)the Earmarked Fund for China Agriculture Research System(CARS-04).
文摘Soybean pests are one of the major factors limiting yield improvement.With the expansion of area and changes in cropping patterns,a number of new pests have been identified in the main soybean production areas of China.The common brown leafhopper,Orosius orientalis,is a new pest associated with soybean stay-green virus that has been discovered on cultivated soybean crop in the Yellow-Huai-hai region of China in recent years.The polyphagous insect has a wide feeding range and infests a variety of important grain and cash crops.This paper presents the basic information,geographical distribution,hosts,damage characteristics,plant virus transmission,occurrence patterns,and prevention and control measures O.orientalis.This review also provides insights into integrated prevention and control of the genus Orosius as an insect vector.