Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
PREPARATION of HMW DNA (Megabase-size) is the basis for construction of genomic library with large DNA inserts such as bacterial artificial chromosome (BAC) and yeast artificial chromosome (YAC), and for long-range ph...PREPARATION of HMW DNA (Megabase-size) is the basis for construction of genomic library with large DNA inserts such as bacterial artificial chromosome (BAC) and yeast artificial chromosome (YAC), and for long-range physical mapping. It can also be used for the macro-study of repeat sequences. Since HMW DNA during preparation is inclined to be sheared physically and digested by internal nucleases, it is very difficult to prepare the HMW DNA. Initially, plant HMW DNA was prepared by embedding protoplasts in the low melting-point (LMP) agarose; however, it had several disadvantages: (ⅰ) Culture of protoplasts was time-consuming, costly and tedious. ( ⅱ ) It was only used successfully for limited展开更多
With rapid development of economy and emergence of more and more high-grade residences,it had highlighted that high-grade residence was the inevitable tendency of economic development and urban construction.Based on t...With rapid development of economy and emergence of more and more high-grade residences,it had highlighted that high-grade residence was the inevitable tendency of economic development and urban construction.Based on the fact that high-grade residences paid more attention to harmony of human and architecture with nature and required higher for landscaping,the paper emphasized that landscape quality of high-grade residences was the key factor deciding quality of the residence.In view of insufficiencies of plant landscaping planning in high-grade residences at home and abroad,by taking high-grade residences in Hangzhou City for example,analysis had been conducted by selecting typical cases.It pointed out that plants disposition in high-grade residences was unreasonable,architectures and landscapes were isolated,and greening ratio was stressed while design was neglected.And then,corresponding solutions had been proposed.In terms of plants selection,it should reasonably utilize native tree species,and properly select new and high-quality plant species.In terms of harmonious unity between plant landscape and architecture,it should lay stress on unity between sensory design and comfort design.In terms of plant design and disposition,it should stick to the theme of "residential environment",so as to rationalize plant design and disposition,and create more comfortable residential environment.展开更多
Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,ligni...Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density.展开更多
The article presents the results of research conducted in Dengizkul and around this area. It identifies plant species in and around the lake and analyzes species composition. As a result of the analysis, 70 species of...The article presents the results of research conducted in Dengizkul and around this area. It identifies plant species in and around the lake and analyzes species composition. As a result of the analysis, 70 species of tall plants belonging to 24 families were identified in the lake. The identified species are divided into aquatic and riparian plants. Of these, 18 species are found in lake water and 52 species in its vicinity. The low number of high plant species in the lake water is due to the salinity of the water. The protection of this area is based on the natural conservation of the surrounding plant <span style="font-family:Verdana;">population.</span>展开更多
The isolation of high quality RNA is a crucial technique in plant molecular biology. The quality of RNA determines the reliability of downstream process like real time PCR. In this paper, we reported a high quality RN...The isolation of high quality RNA is a crucial technique in plant molecular biology. The quality of RNA determines the reliability of downstream process like real time PCR. In this paper, we reported a high quality RNA extraction protocol for a variety of plant species. Our protocol is time effective than traditional RNA extraction methods. The method takes only an hour to complete the procedure. Spectral measurement and electrophoresis were used to demonstrate RNA quality and quantity. The extracted RNA was further used for cDNA synthesis, expression analysis and copy number determination through Real Time PCR. The results indicate that RNA was of good quality and fit for real time PCR. This high throughput plant RNA extraction protocol can be used to isolate high quality RNA from diverse plants for real time PCR and other downstream applications.展开更多
Base editing, as an expanded clustered regularly interspaced short palindromic repeats(CRISPR)-Cas genome editing strategy, permits precise and irreversible nucleotide conversion. SaKKH, an efficient variant of a Cas9...Base editing, as an expanded clustered regularly interspaced short palindromic repeats(CRISPR)-Cas genome editing strategy, permits precise and irreversible nucleotide conversion. SaKKH, an efficient variant of a Cas9 ortholog from Staphylococcus aureus(SaCas9), is important in genome editing because it can edit sites with HHHAAT protospacer adjacent motif(PAM) that the canonical Streptococcus pyogenes Cas9(SpCas9) or its variants(e.g. xCas9, Cas9-NG) cannot. However, several technical parameters of SaKKH involved base editors have not been well defined and this uncertainty limits their application. We developed an effective multiplex cytosine base editor(SaKKHn-pBE) and showed that it recognized NNARRT, NNCRRT, NNGRGT, and NNTRGT PAMs. Based on 27 targets tested, we defined technical parameters of SaKKHn-pBE including the editing window, the preferred sequence context, and the mutation type. The editing efficiency was further improved by modification of the SaKKH sgRNA. These advances can be applied in future research and molecular breeding in rice and other plants.展开更多
Because the cytoplasm of a plant normally degrades after the death of the plant, finding cytoplasm in a plant body after a prolonged period of time, especially in fossil plants, is unexpected. Recent work on several 1...Because the cytoplasm of a plant normally degrades after the death of the plant, finding cytoplasm in a plant body after a prolonged period of time, especially in fossil plants, is unexpected. Recent work on several 100-Myr-old plant fossils from Kansas, USA indicates, however, that cells and their contents can be preserved. Most of the cells in these fossil plants appear to be in a state of plasmolysis, and these fossil cells bear a strong resemblance to laboratory-baked cells of extant plant tissues. Based on a comparison with extant material plus biophysical and biochemical analyses of the cytoplasm degrading process, a new hypothesis for cytoplasm preservation in nature is proposed: high temperature, a concomitant of commonly seen wildfires, may preserve cytoplasm in fossil plants. This hypothesis implies that fossilized cytoplasm should be rather common and an appropriate substance for research, unlike previously thought. Research on fossil cytoplasm closely integrates paleobotany with biochemistry, biophysics, as well as fire ecology, and invites inputs from these fields to paleobotany to interpret these provocative findings.展开更多
Increasing the planting density is one way to enhance grain production in maize.However,high planting density brings about growth and developmental defects such as barrenness,which is the major factor limiting grain y...Increasing the planting density is one way to enhance grain production in maize.However,high planting density brings about growth and developmental defects such as barrenness,which is the major factor limiting grain yield.In this study,the barrenness was characterized in an association panel comprising 280 inbred lines under normal(67500 plants ha–1,ND)and high(120000 plants ha–1,HD)planting densities in 2017 and 2018.The population was genotyped using 776254 single nucleotide polymorphism(SNP)markers with criteria of minor allele frequency>5%and<20%missing data.A genome-wide association study(GWAS)was conducted for barrenness under ND and HD,as well as the barrenness ratio(HD/ND),by applying a Mixed Linear Model that controls both population structure and relative kinship(Q+K).In total,20 SNPs located in nine genes were significantly(P<6.44×10–8)associated with barrenness under the different planting densities.Among them,seven SNPs for barrenness at ND and HD were located in two genes,four of which were common under both ND and HD.In addition,13 SNPs for the barrenness ratio were located in seven genes.A complementary pathway analysis indicated that the metabolic pathways of amino acids,such as glutamate and arginine,and the mitogen-activated protein kinase(MAPK)signaling pathway might play important roles in tolerance to high planting density.These results provide insights into the genetic basis of high planting density tolerance and will facilitate high yield maize breeding.展开更多
Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-be...Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages; the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments, Liaodou 14 produced a higher yield than the other two cultivars, with significant differences from the Ohio cultivars. In summary, super high-yielding soybean cultivars have several main features: suitable plant height, high pod density, good leaf structure with strong functionality, and slow leaf senescence at the late reproductive stage, which is conducive to the accumulation of dry matter and improved yield.展开更多
Increasing the planting density is an effective way to increase the yield of maize(Zea mays L.),although it can also aggravate ovary apical abortion-induced bald tips of the ears,which might,in turn,reduce the yield.W...Increasing the planting density is an effective way to increase the yield of maize(Zea mays L.),although it can also aggravate ovary apical abortion-induced bald tips of the ears,which might,in turn,reduce the yield.While the mechanism underlying the regulation of drought-related abortion in maize is well established,high planting density-related abortion in maize remains poorly understood.Therefore,the present study was designed to investigate the mechanism underlying the ovary apical abortion response to high density.This was achieved by evaluating the effects of four different plant densities(60000 plants ha^(–1)(60 k),90 k,120 k,and 150 k)on plant traits related to plant architecture,the plant ear,flowering time,and silk development in two inbred lines(Zheng58 and PH4CV)and two hybrid lines(Zhengdan958 and Xianyu335).The phenotypes of both inbred and hybrid plants were observed under different planting density treatments,and the high planting density was found to increase the phenotypic performance values of the evaluated traits.The anthesis–silking interval(ASI)was extended,and the amount of the silk extruded from husks was reduced upon increasing the planting density.Delayed silk emergence resulted in asynchronous flowering and ear bald tips.Observations of the silk cells revealed that the silk cells became smaller as planting density increased.The changes in transcript abundances in the silks involved the genes associated with expansive growth rather than carbon metabolism.These findings further our understanding of silk growth regulation under high planting density and provide a theoretical basis for further research on improving high planting density breeding in maize.展开更多
In this article, information about the geographical location of the Karakir Lake in Bukhara region, high water plants, systematics and their distribution is presented. As a result of the research, Lake Karakir has 34 ...In this article, information about the geographical location of the Karakir Lake in Bukhara region, high water plants, systematics and their distribution is presented. As a result of the research, Lake Karakir has 34 species of high water plants belonging to 16 families. These plants were divided into ecological groups and analyzed.展开更多
Guar is a drought and salt tolerant summer annual legume, which could be a potential alternative crop in the semi-arid Southern High Plains. Increased use of guar gum in oil industries has increased the demand of guar...Guar is a drought and salt tolerant summer annual legume, which could be a potential alternative crop in the semi-arid Southern High Plains. Increased use of guar gum in oil industries has increased the demand of guar globally. Planting date effects on stand establishment, physiological parameters, and yield formation of guar genotypes were investigated at the New Mexico State University’s Agricultural Science Center at Clovis, NM for two seasons (2014 and 2015). Four guar genotypes (HES 1123, Kinman, Lewis, and Matador) were tested under three planting dates (June 18, July 7, and July 22 in 2014;and June 18, July 6, and July 20 in 2015). Higher temperature and rainfall were recorded under mid-June planting than early-July and late-July plantings. Guar planted under mid-June had better stand establishment as shown by the higher number of plants m<sup>-2</sup>, better physiology as revealed by higher photosynthetic rate (P<sub>n</sub>), transpiration rate (T<sub>r</sub>), leaf area index (LAI), and SPAD values than early-July and late-July plantings. Guar planted under mid-June resulted in taller plants, and therefore, produced higher plant biomass than both of the July plantings. Yield attributing characteristics including clusters plant<sup>-1</sup>, pods plant<sup>-1</sup>, seeds plant<sup>-1</sup>, seed spod<sup>-1</sup>, 1000 seed weight, and harvest index (HI) were highest under mid-June planting followed by the early-July and late-July plantings, respectively. The mid-June planting increased seed yield by 26% and 55% over early-July and late-July (1399 vs. 1111 and 903 kg·ha<sup>-1</sup>) plantings, respectively in 2014;while the same increase in 2015 was 51% and 243% (1308 vs. 868 and 381 kg·ha<sup>-1</sup>), respectively. These results indicate that delaying planting beyond mid-June is detrimental to guar productivity. However, genotypes did not show any significant variation in their performance. Overall, warmer growing conditions and more precipitation under mid-June planting caused better growth and yield formation of guar genotypes.展开更多
An ex-situ experiment was conducted to evaluate the growth performance of six medicinal species (Bergenia ciliata,Valeriana jatamansi,Dioscorea deltoidea,Paeonia emodi,Polygonum amplexicaule and Viola serpense) from u...An ex-situ experiment was conducted to evaluate the growth performance of six medicinal species (Bergenia ciliata,Valeriana jatamansi,Dioscorea deltoidea,Paeonia emodi,Polygonum amplexicaule and Viola serpense) from upper Swat,Pakistan.Experiments were conducted at four different locations in the upper Swat valley at altitudes ranging from 1200 to 1900 m.a.s.l.The objectives were:1) to determine the suitability of ex-situ cultivation of different medicinal species,and;2) to assess the economic geasibility of growing medicinal plants in the area.A highest mean survival of 80.7% across all locations was observed for Viola serpense,followed by 58.7% for Valeriana jatamansi.The remaining four species exhibited very poor survival rates,although Polygonum amplexicaule,did show encouraging signs of growth and flowered,before experiencing high mortality rates late in the trial.Altitude generally seemed to enhance the degree of sprouting for all species except Viola serpense.However,the productive yield of V.serpense was certainly not reduced,but rather slightly enhanced in the higher altitude sites.Overall,cultivation of only two of the investigated species,Valeriana jatamansi and Viola serpense,appeared successful and potentially economically viable under farmland conditions at upper Swat.展开更多
Elemental analyzer/isotope ratio mass spectrometry(EA/TRMS) has been widely applied to analyze the^(15)N/^(14)N isotope composition(δ^(15)N) of plants and soils,but the δ^(15)N results may be inaccurate due to incom...Elemental analyzer/isotope ratio mass spectrometry(EA/TRMS) has been widely applied to analyze the^(15)N/^(14)N isotope composition(δ^(15)N) of plants and soils,but the δ^(15)N results may be inaccurate due to incomplete combustion of the high-C/N-ratio plant samples by EA.Therefore,it is necessary to develop a method to solve the problem of imperfect combustion.In this study,we used two methods:1) adding copper oxide powder to the samples,and 2) increasing the O_2 flow(from 100 mL min^(-1) to 200 mL min^(-1)) for the auto sampler inlet purge line of the EA.The δ^(15)N values of the plant samples became more positive and tended to be stable after complete combustion.Also,the required blank samples for each plant sample decreased with increasing amount of the added CuO powder.However,at 200 mL min^(-1) of the oxygen flow in the EA,complete combustion could not be achieved without adding copper oxide,but this was done with decreased amount of CuO powder.Therefore,mixing cupric oxide into the high-C/N-ratio samples was an efficient,simple and convenient way to solve the problem of imperfect combustion in the EA.展开更多
There is A certain foundation in this experiment. It was the second time we did this experiment. The purposes are three parts, first, explore the 30000~40000 meters high sky with two cameras recording the scene. The S...There is A certain foundation in this experiment. It was the second time we did this experiment. The purposes are three parts, first, explore the 30000~40000 meters high sky with two cameras recording the scene. The Second, find out whether the high sky condition(temperature, air pressure, cosmic ray) make influence on plants seeds. The third, text whether normal aquatic animal is able to survive in high sky. The conclusions are also three parts. It is important to set a deadline for my group member to finish the assignment, and also check their process, or they might delay their own part of work or they are not in charge of the work. As the leader, I should be thoughtful. Not only about members’ assignment, but also the details of their work, previously. Discuss about each task with group to ensure the correctness. Last but not least, every part of the experiment needs to be tested carefully. Only if we try our best to prevent accidents that might happen, then the experiment is able to success.展开更多
The sugar cane containing minimum 30% fiber was referred as bagasse and used the generation of power required for the operation of sugar mill. The bagasse is fired in the boiler for producing steam at high pressure, w...The sugar cane containing minimum 30% fiber was referred as bagasse and used the generation of power required for the operation of sugar mill. The bagasse is fired in the boiler for producing steam at high pressure, which is extracted through various single high capacity turbines and used in the process. The installation of high pressure boilers and high pressure turbo-generators has provision for the operation of co-generation plant during the off-season also that enhances the power generation from 9MW to 23MW. The annual monetary benefits achieved are Rs. 204.13 million and this was based on cost of power sold to the grid @ Rs 2.548 per unit, sugar season of 219 days and off season of 52 days. This required an investment of Rs 820.6 million. The investment had an attractive simple payback period of 48 months.展开更多
[Ohjective] The aim of the study is to investigate the productivity and light quality in two high density M26 dwarf rootstock apple orchards in central China so as to provide some management guidance for close plantin...[Ohjective] The aim of the study is to investigate the productivity and light quality in two high density M26 dwarf rootstock apple orchards in central China so as to provide some management guidance for close planting of dwarf rootstock apples.[Method] The technical parameters of individual trees and group parameters as shoot number and composition and canopy coverage were determined, and the light quality in the canopy, fruit production and quality were investigated. [Result] Slender spindle (SS) orchard has 54 thousands shoots per 667 m^2. Coverage rate is 76%. Leaf area index is 1.9. The ratio of long, medium and spur shoots is 1:1:8. Fruit yield is 3 263 kg/667 m^2 with 85% first grade fruit. Light interception in the canopy is 58% while the ratio of canopy with good light is 65%. Modified slender spindle (MSS) orchard has 93 thousands shoots per 667 m^2 and the coverage is 77%. Leaf area index is 3.3. The ratio cf long, medium and spur shoots is 1:2:7. Fruit yield is 3 931 kg/667 m^2 with 85% first grade fruit. The light interception in the canopy is 73% while the ratio of canopy with good light is 35%. [Conclusion] Apple orchard with M26 dwarf rootstock trained as SS and MSS tree form in medium planting density may be useful to the management of the similar orchards in Central China.展开更多
Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor r...Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars.展开更多
Using the split plot and multi-quadric regressive orthogonal cross-course rotary combination design, corn variety Denghai 6’s yield and yield components, important colony quality and physiological index, microclimate...Using the split plot and multi-quadric regressive orthogonal cross-course rotary combination design, corn variety Denghai 6’s yield and yield components, important colony quality and physiological index, microclimate index in field and technical planting for high yield were studied. Cultivation for high yield showed that Denghai 6 had the great potential of increase yield. The average yield of two years was展开更多
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
文摘PREPARATION of HMW DNA (Megabase-size) is the basis for construction of genomic library with large DNA inserts such as bacterial artificial chromosome (BAC) and yeast artificial chromosome (YAC), and for long-range physical mapping. It can also be used for the macro-study of repeat sequences. Since HMW DNA during preparation is inclined to be sheared physically and digested by internal nucleases, it is very difficult to prepare the HMW DNA. Initially, plant HMW DNA was prepared by embedding protoplasts in the low melting-point (LMP) agarose; however, it had several disadvantages: (ⅰ) Culture of protoplasts was time-consuming, costly and tedious. ( ⅱ ) It was only used successfully for limited
文摘With rapid development of economy and emergence of more and more high-grade residences,it had highlighted that high-grade residence was the inevitable tendency of economic development and urban construction.Based on the fact that high-grade residences paid more attention to harmony of human and architecture with nature and required higher for landscaping,the paper emphasized that landscape quality of high-grade residences was the key factor deciding quality of the residence.In view of insufficiencies of plant landscaping planning in high-grade residences at home and abroad,by taking high-grade residences in Hangzhou City for example,analysis had been conducted by selecting typical cases.It pointed out that plants disposition in high-grade residences was unreasonable,architectures and landscapes were isolated,and greening ratio was stressed while design was neglected.And then,corresponding solutions had been proposed.In terms of plants selection,it should reasonably utilize native tree species,and properly select new and high-quality plant species.In terms of harmonious unity between plant landscape and architecture,it should lay stress on unity between sensory design and comfort design.In terms of plant design and disposition,it should stick to the theme of "residential environment",so as to rationalize plant design and disposition,and create more comfortable residential environment.
基金supported by projects funded by the China Postdoctoral Science Foundation(2019M663837 and 2021M701521)the National High-Tech Research and Development Programs of China(2013AA102902)the special fund for Agro-scientific Research in the Public Interest,China(201303104)。
文摘Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density.
文摘The article presents the results of research conducted in Dengizkul and around this area. It identifies plant species in and around the lake and analyzes species composition. As a result of the analysis, 70 species of tall plants belonging to 24 families were identified in the lake. The identified species are divided into aquatic and riparian plants. Of these, 18 species are found in lake water and 52 species in its vicinity. The low number of high plant species in the lake water is due to the salinity of the water. The protection of this area is based on the natural conservation of the surrounding plant <span style="font-family:Verdana;">population.</span>
文摘The isolation of high quality RNA is a crucial technique in plant molecular biology. The quality of RNA determines the reliability of downstream process like real time PCR. In this paper, we reported a high quality RNA extraction protocol for a variety of plant species. Our protocol is time effective than traditional RNA extraction methods. The method takes only an hour to complete the procedure. Spectral measurement and electrophoresis were used to demonstrate RNA quality and quantity. The extracted RNA was further used for cDNA synthesis, expression analysis and copy number determination through Real Time PCR. The results indicate that RNA was of good quality and fit for real time PCR. This high throughput plant RNA extraction protocol can be used to isolate high quality RNA from diverse plants for real time PCR and other downstream applications.
基金supported by the Beijing Scholars Program[BSP041]。
文摘Base editing, as an expanded clustered regularly interspaced short palindromic repeats(CRISPR)-Cas genome editing strategy, permits precise and irreversible nucleotide conversion. SaKKH, an efficient variant of a Cas9 ortholog from Staphylococcus aureus(SaCas9), is important in genome editing because it can edit sites with HHHAAT protospacer adjacent motif(PAM) that the canonical Streptococcus pyogenes Cas9(SpCas9) or its variants(e.g. xCas9, Cas9-NG) cannot. However, several technical parameters of SaKKH involved base editors have not been well defined and this uncertainty limits their application. We developed an effective multiplex cytosine base editor(SaKKHn-pBE) and showed that it recognized NNARRT, NNCRRT, NNGRGT, and NNTRGT PAMs. Based on 27 targets tested, we defined technical parameters of SaKKHn-pBE including the editing window, the preferred sequence context, and the mutation type. The editing efficiency was further improved by modification of the SaKKH sgRNA. These advances can be applied in future research and molecular breeding in rice and other plants.
基金the Royal Society K. C. Wong FellowshipsChina Postdoctoral Science Foundation (No. 2005037746)+3 种基金 State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS, No. 053103) Jiangsu Planned Project for Postdoctoral Research Funds, National Natural Science Foundation of China Program (No. 40632010 and No. J0630967) Sigma Xi Society the Deep Time RCN for their financial support.
文摘Because the cytoplasm of a plant normally degrades after the death of the plant, finding cytoplasm in a plant body after a prolonged period of time, especially in fossil plants, is unexpected. Recent work on several 100-Myr-old plant fossils from Kansas, USA indicates, however, that cells and their contents can be preserved. Most of the cells in these fossil plants appear to be in a state of plasmolysis, and these fossil cells bear a strong resemblance to laboratory-baked cells of extant plant tissues. Based on a comparison with extant material plus biophysical and biochemical analyses of the cytoplasm degrading process, a new hypothesis for cytoplasm preservation in nature is proposed: high temperature, a concomitant of commonly seen wildfires, may preserve cytoplasm in fossil plants. This hypothesis implies that fossilized cytoplasm should be rather common and an appropriate substance for research, unlike previously thought. Research on fossil cytoplasm closely integrates paleobotany with biochemistry, biophysics, as well as fire ecology, and invites inputs from these fields to paleobotany to interpret these provocative findings.
基金the 2020 Research Program of Sanya Yazhou Bay Science and Technology City,China(SKJC-2020-02-005)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202004 and CAAS-ZDRW202109).
文摘Increasing the planting density is one way to enhance grain production in maize.However,high planting density brings about growth and developmental defects such as barrenness,which is the major factor limiting grain yield.In this study,the barrenness was characterized in an association panel comprising 280 inbred lines under normal(67500 plants ha–1,ND)and high(120000 plants ha–1,HD)planting densities in 2017 and 2018.The population was genotyped using 776254 single nucleotide polymorphism(SNP)markers with criteria of minor allele frequency>5%and<20%missing data.A genome-wide association study(GWAS)was conducted for barrenness under ND and HD,as well as the barrenness ratio(HD/ND),by applying a Mixed Linear Model that controls both population structure and relative kinship(Q+K).In total,20 SNPs located in nine genes were significantly(P<6.44×10–8)associated with barrenness under the different planting densities.Among them,seven SNPs for barrenness at ND and HD were located in two genes,four of which were common under both ND and HD.In addition,13 SNPs for the barrenness ratio were located in seven genes.A complementary pathway analysis indicated that the metabolic pathways of amino acids,such as glutamate and arginine,and the mitogen-activated protein kinase(MAPK)signaling pathway might play important roles in tolerance to high planting density.These results provide insights into the genetic basis of high planting density tolerance and will facilitate high yield maize breeding.
基金partially supported by the National Natural Science Foundation of China (31101104, 31271643)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20102103120011)the Liaoning Provincial Science and Technology Project, China (2011201020)
文摘Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages; the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments, Liaodou 14 produced a higher yield than the other two cultivars, with significant differences from the Ohio cultivars. In summary, super high-yielding soybean cultivars have several main features: suitable plant height, high pod density, good leaf structure with strong functionality, and slow leaf senescence at the late reproductive stage, which is conducive to the accumulation of dry matter and improved yield.
基金supported by the National Key R&D Program of China(2016YFD0101002)the National Natural Science Foundation of China(32072068)the Central Public-interest Scientific Institution Basal Research Fund,China(1610392021001)。
文摘Increasing the planting density is an effective way to increase the yield of maize(Zea mays L.),although it can also aggravate ovary apical abortion-induced bald tips of the ears,which might,in turn,reduce the yield.While the mechanism underlying the regulation of drought-related abortion in maize is well established,high planting density-related abortion in maize remains poorly understood.Therefore,the present study was designed to investigate the mechanism underlying the ovary apical abortion response to high density.This was achieved by evaluating the effects of four different plant densities(60000 plants ha^(–1)(60 k),90 k,120 k,and 150 k)on plant traits related to plant architecture,the plant ear,flowering time,and silk development in two inbred lines(Zheng58 and PH4CV)and two hybrid lines(Zhengdan958 and Xianyu335).The phenotypes of both inbred and hybrid plants were observed under different planting density treatments,and the high planting density was found to increase the phenotypic performance values of the evaluated traits.The anthesis–silking interval(ASI)was extended,and the amount of the silk extruded from husks was reduced upon increasing the planting density.Delayed silk emergence resulted in asynchronous flowering and ear bald tips.Observations of the silk cells revealed that the silk cells became smaller as planting density increased.The changes in transcript abundances in the silks involved the genes associated with expansive growth rather than carbon metabolism.These findings further our understanding of silk growth regulation under high planting density and provide a theoretical basis for further research on improving high planting density breeding in maize.
文摘In this article, information about the geographical location of the Karakir Lake in Bukhara region, high water plants, systematics and their distribution is presented. As a result of the research, Lake Karakir has 34 species of high water plants belonging to 16 families. These plants were divided into ecological groups and analyzed.
文摘Guar is a drought and salt tolerant summer annual legume, which could be a potential alternative crop in the semi-arid Southern High Plains. Increased use of guar gum in oil industries has increased the demand of guar globally. Planting date effects on stand establishment, physiological parameters, and yield formation of guar genotypes were investigated at the New Mexico State University’s Agricultural Science Center at Clovis, NM for two seasons (2014 and 2015). Four guar genotypes (HES 1123, Kinman, Lewis, and Matador) were tested under three planting dates (June 18, July 7, and July 22 in 2014;and June 18, July 6, and July 20 in 2015). Higher temperature and rainfall were recorded under mid-June planting than early-July and late-July plantings. Guar planted under mid-June had better stand establishment as shown by the higher number of plants m<sup>-2</sup>, better physiology as revealed by higher photosynthetic rate (P<sub>n</sub>), transpiration rate (T<sub>r</sub>), leaf area index (LAI), and SPAD values than early-July and late-July plantings. Guar planted under mid-June resulted in taller plants, and therefore, produced higher plant biomass than both of the July plantings. Yield attributing characteristics including clusters plant<sup>-1</sup>, pods plant<sup>-1</sup>, seeds plant<sup>-1</sup>, seed spod<sup>-1</sup>, 1000 seed weight, and harvest index (HI) were highest under mid-June planting followed by the early-July and late-July plantings, respectively. The mid-June planting increased seed yield by 26% and 55% over early-July and late-July (1399 vs. 1111 and 903 kg·ha<sup>-1</sup>) plantings, respectively in 2014;while the same increase in 2015 was 51% and 243% (1308 vs. 868 and 381 kg·ha<sup>-1</sup>), respectively. These results indicate that delaying planting beyond mid-June is detrimental to guar productivity. However, genotypes did not show any significant variation in their performance. Overall, warmer growing conditions and more precipitation under mid-June planting caused better growth and yield formation of guar genotypes.
文摘An ex-situ experiment was conducted to evaluate the growth performance of six medicinal species (Bergenia ciliata,Valeriana jatamansi,Dioscorea deltoidea,Paeonia emodi,Polygonum amplexicaule and Viola serpense) from upper Swat,Pakistan.Experiments were conducted at four different locations in the upper Swat valley at altitudes ranging from 1200 to 1900 m.a.s.l.The objectives were:1) to determine the suitability of ex-situ cultivation of different medicinal species,and;2) to assess the economic geasibility of growing medicinal plants in the area.A highest mean survival of 80.7% across all locations was observed for Viola serpense,followed by 58.7% for Valeriana jatamansi.The remaining four species exhibited very poor survival rates,although Polygonum amplexicaule,did show encouraging signs of growth and flowered,before experiencing high mortality rates late in the trial.Altitude generally seemed to enhance the degree of sprouting for all species except Viola serpense.However,the productive yield of V.serpense was certainly not reduced,but rather slightly enhanced in the higher altitude sites.Overall,cultivation of only two of the investigated species,Valeriana jatamansi and Viola serpense,appeared successful and potentially economically viable under farmland conditions at upper Swat.
文摘Elemental analyzer/isotope ratio mass spectrometry(EA/TRMS) has been widely applied to analyze the^(15)N/^(14)N isotope composition(δ^(15)N) of plants and soils,but the δ^(15)N results may be inaccurate due to incomplete combustion of the high-C/N-ratio plant samples by EA.Therefore,it is necessary to develop a method to solve the problem of imperfect combustion.In this study,we used two methods:1) adding copper oxide powder to the samples,and 2) increasing the O_2 flow(from 100 mL min^(-1) to 200 mL min^(-1)) for the auto sampler inlet purge line of the EA.The δ^(15)N values of the plant samples became more positive and tended to be stable after complete combustion.Also,the required blank samples for each plant sample decreased with increasing amount of the added CuO powder.However,at 200 mL min^(-1) of the oxygen flow in the EA,complete combustion could not be achieved without adding copper oxide,but this was done with decreased amount of CuO powder.Therefore,mixing cupric oxide into the high-C/N-ratio samples was an efficient,simple and convenient way to solve the problem of imperfect combustion in the EA.
文摘There is A certain foundation in this experiment. It was the second time we did this experiment. The purposes are three parts, first, explore the 30000~40000 meters high sky with two cameras recording the scene. The Second, find out whether the high sky condition(temperature, air pressure, cosmic ray) make influence on plants seeds. The third, text whether normal aquatic animal is able to survive in high sky. The conclusions are also three parts. It is important to set a deadline for my group member to finish the assignment, and also check their process, or they might delay their own part of work or they are not in charge of the work. As the leader, I should be thoughtful. Not only about members’ assignment, but also the details of their work, previously. Discuss about each task with group to ensure the correctness. Last but not least, every part of the experiment needs to be tested carefully. Only if we try our best to prevent accidents that might happen, then the experiment is able to success.
文摘The sugar cane containing minimum 30% fiber was referred as bagasse and used the generation of power required for the operation of sugar mill. The bagasse is fired in the boiler for producing steam at high pressure, which is extracted through various single high capacity turbines and used in the process. The installation of high pressure boilers and high pressure turbo-generators has provision for the operation of co-generation plant during the off-season also that enhances the power generation from 9MW to 23MW. The annual monetary benefits achieved are Rs. 204.13 million and this was based on cost of power sold to the grid @ Rs 2.548 per unit, sugar season of 219 days and off season of 52 days. This required an investment of Rs 820.6 million. The investment had an attractive simple payback period of 48 months.
基金Supported by National Apple Industry Programs of Ministry of Agriculture(CARS-28)~~
文摘[Ohjective] The aim of the study is to investigate the productivity and light quality in two high density M26 dwarf rootstock apple orchards in central China so as to provide some management guidance for close planting of dwarf rootstock apples.[Method] The technical parameters of individual trees and group parameters as shoot number and composition and canopy coverage were determined, and the light quality in the canopy, fruit production and quality were investigated. [Result] Slender spindle (SS) orchard has 54 thousands shoots per 667 m^2. Coverage rate is 76%. Leaf area index is 1.9. The ratio of long, medium and spur shoots is 1:1:8. Fruit yield is 3 263 kg/667 m^2 with 85% first grade fruit. Light interception in the canopy is 58% while the ratio of canopy with good light is 65%. Modified slender spindle (MSS) orchard has 93 thousands shoots per 667 m^2 and the coverage is 77%. Leaf area index is 3.3. The ratio cf long, medium and spur shoots is 1:2:7. Fruit yield is 3 931 kg/667 m^2 with 85% first grade fruit. The light interception in the canopy is 73% while the ratio of canopy with good light is 35%. [Conclusion] Apple orchard with M26 dwarf rootstock trained as SS and MSS tree form in medium planting density may be useful to the management of the similar orchards in Central China.
基金supported by the National Basic Research Program of China (973 Program, 2015CB150401)the National Key Research and Development Program of China (2016YFD0300101)the National Maize Industrial Technology System, China
文摘Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars.
文摘Using the split plot and multi-quadric regressive orthogonal cross-course rotary combination design, corn variety Denghai 6’s yield and yield components, important colony quality and physiological index, microclimate index in field and technical planting for high yield were studied. Cultivation for high yield showed that Denghai 6 had the great potential of increase yield. The average yield of two years was