Dry eye disease(DED),a chronic multifactorial illness of the ocular surface with itching,burning,irritation,eye fatigue and ocular inflammation,may result in potential damage,such as cornea and conjunctiva,and even de...Dry eye disease(DED),a chronic multifactorial illness of the ocular surface with itching,burning,irritation,eye fatigue and ocular inflammation,may result in potential damage,such as cornea and conjunctiva,and even decreased vision.With the global prevalence of DED on the rise,it is crucial to find treatment options with minimal side effects.Natural plant products have shown promise in alleviating DED symptoms and may serve as a potential approach for its treatment.However,their application as instilled drugs is limited by solubility,stability and biological barriers.This review summarizes recent studies(published in the last 5 years)on natural plant products and their derivatives for the treatment of DED,focusing on efficacy,mechanism,drug delivery systems.Meanwhile,their shortcomings are also discussed.By exploring these aspects,we find polyphenol,flavonoid and others natural plant products can effectively improve or treat DED by different mechanisms,and suitable delivery system and structural modification can enhance their therapeutic effect,suggesting they are likely to become candidates for the treatment of DED.展开更多
[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing t...[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing time and plant productivity, biological yield of forage sorghum were simulated and compared by using field experiment and linear regression analysis.[Result] The sowing time had an important influence on the plant productivity and biological yield of forage sorghum in autumn idle land. The plant productivity and biological yield of forage sorghum both decreased with the delay of sowing time.The regression model between plant fresh weight and sowing time was ?fresh=0.618-0.015x; the regression model between plant dry weight and sowing time was ?dry=0.184-0.005x; and the regression model between biological yield and sowing time was yield=29 126.461-711.448x. During July 23rd to August 30th, when the sowing time was delayed by 1 day, the plant fresh weight of forage sorghum was reduced by 0.015 g, the plant dry weight was reduced by 0.005 g, and the yield was reduced by 711.448 kg/hm2. [Conclusion] The three regression models established in this study will provide theoretical support for the production of forage sorghum.展开更多
This review discusses the bioefficacy of natural products(derived from neem and other tropical trees) which have been used against insect pests and diseases attacking forest trees in India.These products are effecti...This review discusses the bioefficacy of natural products(derived from neem and other tropical trees) which have been used against insect pests and diseases attacking forest trees in India.These products are effective,cheaper and eco-friendly and act as antifeedant,repellent,sterility inducing,toxic or regulate insect growth.Integration of these products in forest pest management strategies would enhance the sustainability of forests and prevent the deterioration of wood quality.展开更多
A pot experiment was conducted by putting ameliorants,the products of plants fermented by lactobacillus,and sandy soil into alkaline-saline soil. After such blending,the soil physicochemical properties and the growth ...A pot experiment was conducted by putting ameliorants,the products of plants fermented by lactobacillus,and sandy soil into alkaline-saline soil. After such blending,the soil physicochemical properties and the growth index of Alfalfa seedlings were measured in order to explore the influence of the blending on alkaline-saline soil and the growth of alfalfa seedlings. The results showed that soil p H decreased significantly after adding ameliorant; mixing ameliorant and sandy soil into alkaline-saline soil reduced soil evaporation and increased the germination rate of alfalfa seeds and their chlorophyll content as well as the seedling height,root length of alfalfa seedlings,but it had no significant effect on alfalfa seedlings' biomass and leaf number; besides,excessive ameliorant would inhibit the growth of alfalfa seedlings.展开更多
[ Objective] This study was conducted to investigate the relationship between each of planting density and row spacing and plant productivity of forage sweet sorghum planted in autumn idle land. [ Methods] Using split...[ Objective] This study was conducted to investigate the relationship between each of planting density and row spacing and plant productivity of forage sweet sorghum planted in autumn idle land. [ Methods] Using split-plot experiment design experiment method and LSD method of IBM. SPSS. Statistics. v22 statistics software, the effects of planting density and row spacing on plant productivity of forage sweet sorghum planted in autumn idle land were compared. [ Result] The results showed that the planting density and row spacing had important influences on plant productivity of forage sweet sorghum planted in autumn idle land. Moreover, the optimal combination of plant productivity for A1B4 , i. e. ,under the combination of the planting density of 7.5 × 10^4 plants/hm^2 and the row spacing of 40 cm, the fresh weight and dry weight per plant were 654.37 and 147.11 g/plant, respectively. [ Conclusion ] The results provided a theoretical basis for the production of forage sweet sorghum in autumn idle land.展开更多
The emissions of greenhouse gasses in Egypt are about 0.58% of the total emissions of the world in the year 2015, although Egypt is one of the countries most affected by the impacts of climate change. By assessment an...The emissions of greenhouse gasses in Egypt are about 0.58% of the total emissions of the world in the year 2015, although Egypt is one of the countries most affected by the impacts of climate change. By assessment and analysis of the expected economic impacts of climate change by the year 2030, the Egyptian cultivated area will be reduced to about 0.949 million acres, equal to about 8.22% of the Egyptian cultivated area compared with the case of no sinking part of the Delta land, thus reducing crop area in Egypt to about 1.406 million acres, approximately to about 6.25% of crop area compared with the case of no sinking part of the Delta land, in addition to surplus in the Egyptian balance water to about 2.48 billion m3. In this case value of the Egyptian agriculture production will decrease by about 6.19 billion dollars, equal to about 6.19% compared with presumably no sinking of the Delta land. In the case of sinking 15% of Delta lands, with the change of the productivity and water consumption of most crops, the result will be a reduction in the cultivated area to about 0.94 million acres. In addition to decreasing the Egyptian crop area to about 1.39 million acres, with a deficit in the Egyptian balance water to about 4.74 billion m3 compared to the case of no sinking part of the Delta land, the cultivated area will decrease to about 8.17%, and the crop area will decrease 6.18%. Also, the value of the Egyptian agriculture production will decrease by about 12.51%. While compared to sinking part of the Delta land to about 15% of the total Delta area without the other impacts of climate change, the cultivated area will increase by about 0.06%;the crop area will increase by about 0.08%;also, the value of the Egyptian agriculture production will decrease by about 5.57%.展开更多
For centuries, plants and plant-based products have been used as a valuable and safe natural source of medicines for treating various ailments. The therapeutic potential of most of these plants could be ascribed to th...For centuries, plants and plant-based products have been used as a valuable and safe natural source of medicines for treating various ailments. The therapeutic potential of most of these plants could be ascribed to their anticancer, antidiabetic, hepatoprotective, cardioprotective, antispasmodic, analgesic and various other pharmacological properties. However, several commonly used plants have been reported to adversely affect male reproductive functions in wildlife and humans. The effects observed with most of the plant and plant-based products have been attributed to the antispermatogenic and/or antisteroidogenic properties of one or more active ingredients. This review discusses the detrimental effects of some of the commonly used plants on various target cells in the testis. A deeper insight into the molecular mechanisms of action of these natural compounds could pave the way for developing therapeutic strategies against their toxicity.展开更多
A model of a potentially effective type energy-resource-saving of optimization of agro-technologies, based on the principle subordination of synergetics, was established. There was developed computer system energy-res...A model of a potentially effective type energy-resource-saving of optimization of agro-technologies, based on the principle subordination of synergetics, was established. There was developed computer system energy-resource-saving optimization of agricultural technologies. The main feature of crop production is provided by the plants which themselves are self-organizing organisms. This allows us to adopt the principle of subordination of synergetics as the basis of the model. The value of free energy at the input into plants, estimated by the process of photosynthesis, is equal to the value of “radiation exergy for plant growth”. Assessment of the use of radiation energy is carried out based on the energy-converting characteristics of plants, which were obtained in climate chambers under controlled conditions. We used the model based on the principle of subordination of synergetics to develop common quantitative mutually agreed definitions of the main agroecological variables: Agroclimatic and Meliorative potentials of lands, their fertility, and potential (maximum) productivity of plants under different environment conditions.展开更多
Although solar exposure is necessary for human health,phototoxicology induced by excessive UVB and UVA radiation,which involves sunburns,skin aging and even tu-morigenesis,has been widely researched.Sunscreen is one o...Although solar exposure is necessary for human health,phototoxicology induced by excessive UVB and UVA radiation,which involves sunburns,skin aging and even tu-morigenesis,has been widely researched.Sunscreen is one of the most important ways to protect skin from UV phototoxic damage.As well as inorganic and organic UV filters,some natural products or plant extracts with aromatic rings in their structures,such as flavonoids or polyphenols,can absorb UV to reduce sunburn,acting as a natu-ral UV filter;they also show antioxidant or/and anti-inflammatory activity.This could explain why,although there are no officially approval natural commercial sun-filters,more and more commercial sunscreen products containing plant extracts are avail-able on the market.Here we summarize articles focusing on natural UV filters from plant published in the last 6 years,selecting the most significant data in order to better understand the photoprotective activity of natural products and extracts from plants,including their major constituents and main biological effects,methods for evaluating UV radiation resistance,anti-UV radiation experimental models and anti-UV radiation mechanisms.展开更多
The tricarboxylic acid(TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role...The tricarboxylic acid(TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function.Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.展开更多
Understanding the determinants of ranging patterns in species susceptible to habitat fragmentation is fundamental for assessing their long-term adaptability to an increasingly human-dominated landscape.The aim of this...Understanding the determinants of ranging patterns in species susceptible to habitat fragmentation is fundamental for assessing their long-term adaptability to an increasingly human-dominated landscape.The aim of this study was to determine and compare the influence of ground-based food availability,remotely sensed plant productivity,and indigenous forest use on the ranging patterns of the endangered samango monkey(Cercopithecus albogularis schwarzi).We collected monthly ranging data on two habituated samango monkey groups,from February 2012 to December 2016,from our field site in the Soutpansberg Mountains,South Africa.We used linear mixed models to explore how food availability,plant productivity,and indigenous forest use influenced monthly ranging patterns,while controlling for group size,number of sample days and day length.We found that as more areas of high plant productivity(derived from remotely sensed EVI)were incorporated into the ranging area,both total and core monthly ranging areas decreased.In addition,both total ranging area and mean monthly daily path length decreased as more indigenous forest was incorporated into the ranging area.However,we found no effect of either ground-based food availability or remotely sensed plant productivity on ranging patterns.Our findings demonstrate the behavioral flexibility in samango monkey ranging,as samangos can utilize matrix habitat during periods of low productivity but are ultimately dependent on access to indigenous forest patches.In addition,we highlight the potential of using remotely sensed areas of high plant productivity to predict ranging patterns in a small ranging,forest-dwelling guenon,over ground-based estimates of food availability.展开更多
Plant natural products are a kind of active substance widely used in pharmaceuticals and foods.However,the current production mode based on plant culture and extraction suffer complex processes and severe concerns for...Plant natural products are a kind of active substance widely used in pharmaceuticals and foods.However,the current production mode based on plant culture and extraction suffer complex processes and severe concerns for environmental and ecological.With the increasing awareness of environmental sustainability,engineered microbial cell factories have been an alternative approach to produce natural products.Many engineering strategies have been utilized in microbial biosynthesis of complex phytochemicals such as dynamic control and substructure engineering.Meanwhile,Enzyme engineering including directed evolution and rational design has been implemented to improve enzyme catalysis efficiency and stability as well as change promiscuity to expand product spectra.In this review,we discussed recent advances in microbial biosynthesis of complex phytochemicals from the following aspects,including pathway construction,strain engineering to boost the production.展开更多
The biodiversity-productivity relationship is an important topic in the research of biodiversity and ecosystem function. The plant diversity productivity pattern is commonly unimodal and positively correlated. This pa...The biodiversity-productivity relationship is an important topic in the research of biodiversity and ecosystem function. The plant diversity productivity pattern is commonly unimodal and positively correlated. This paper researches the characteristics of plant diversity-productivity patterns in the Bayanbuluk alpine steppe in the central Tianshan Mountains, Xinjiang, China, and analyzes the effects of environmental factors on the distribution of plant communities, species composition, plant diversity and productivity in the steppe. The results show a positive correlation between plant diversity and productivity. DCCA (detrended canonical correspondence analysis) ordination reveals a significant relationship between the effects of air temperature, soil moisture content, available soil nitrogen, relative humidity and pH value on the distribution and composition of plant communities. There are significant correlations between the soil moisture content, relative humidity, pH value, air temperature and species richness and the aboveground biomass of Gramineae and Cyperaceae, and also significant correlations between the relative humidity, pH values and the total aboveground biomass of plant communities.展开更多
We examined patterns of plant species richness on an elevation gradient and evaluated the effects of cli- matic variables including mean annual temperature and precipitation, area, the mid-domain effect and productivi...We examined patterns of plant species richness on an elevation gradient and evaluated the effects of cli- matic variables including mean annual temperature and precipitation, area, the mid-domain effect and productivity on species richness along two transects on Mt. Seorak, South Korea. A total of 235 plant species of 72 families and 161 genera were recorded from 130 plots along the two transects. Two different patterns, monotonic decline and a unimodal shape, were observed for woody plants with the change in elevation along the two transects, whereas multimodal patterns were observed for all plant species considered together and for herbaceous plants. Area and productivity showed significant relationships with total plant richness. Climatic variables were better predictors than other variables for variation by elevation in woody plant richness, whereas productivity was a more important variable for herbaceous plant richness. Although area was an important variable for predicting species richness pat- terns, the effects differed by transect and plant group. No empirical evidence was linked to the mid-domain effect.Different elevational patterns may characterize different groups in the same taxon and there might be fundamental differences in the mechanisms underlying these richness patterns.展开更多
To provide genetic information and materials for breeding hybrid japonica rice with wide adaptability and strong competitive advantage of yield, elite alleles and their carrier varieties of growth duration (GD) and ...To provide genetic information and materials for breeding hybrid japonica rice with wide adaptability and strong competitive advantage of yield, elite alleles and their carrier varieties of growth duration (GD) and productive panicle number per plant (PN) were detected. A natural population composed of 94 japonica varieties was phenotyped for the GD, PN and plant height (PH) in two environments. The conditional phenotypic data were transferred by the linear model method in software QGAStation 1.0, and association mapping based on the unconditional and conditional phenotype values of GD and PN was analyzed by using general linear model in software TASSEL. A total of 34 simple sequence repeat (SSR) marker loci associated with GD and PN were detected in the two environments. Among them, 15 were associated with GD, and 19 were associated with PN. Four elite alleles of RM8095-120bp, RM7102-176bp, RM72-170bp and RM72-178bp were associated with GD, and their carrier varieties were Hongmangshajing, Nipponbare, Hongmangshajing and Nannongjing 62401, respectively. These elite alleles from the carrier varieties can shorten GD by 2.03-9.93 d when they were introduced into improved materials. RM72-182bp associated with PN was an elite allele, and its carrier variety was Xiaoqingzhong. It can increase PN by three when introduced into improved materials. Moreover, these elite alleles can be used to improve target traits without influencing another two traits.展开更多
[Objective]The research aimed to study the response of plant climatic productivity to warming and drying tendency in Huanren in the past 58 years.[Method]Based on the temperature and precipitation data in Huanren from...[Objective]The research aimed to study the response of plant climatic productivity to warming and drying tendency in Huanren in the past 58 years.[Method]Based on the temperature and precipitation data in Huanren from 1953 to 2010,using trend analysis,Thornthwaite Memorial model and Mann-Kendall detection method,change characteristics of climate and plant climatic productivity in Huanren were analyzed,and the regression evaluation model between plant climatic productivity and temperature and precipitation was established.[Result]Annual average temperature in Huanren presented a significant upward trend,and its linear tendency rate was 0.29℃/10 a;annual precipitation presented a decreasing trend,and its linear tendency rate was-13.29 mm/10 a;dryness presented a declining trend.The warming and drying trend was obvious in Huanren.Plant climatic productivity presented a significant increasing trend,and its linear tendency rate was 8.39 g/(m2·10 a).Plant climatic productivity was closely related to precipitation and temperature.[Conclusion]The research could provide basis and reference for the adjustment of agricultural structure and sufficiently playing the advantages of climate resources in Huanren.展开更多
In the delicate normative balance, at European Union (EU) level of the borderline products (i.e., between plant protectants and bio-fertilizers/bio-effectors) containing microbial consortia (MC) instead of singl...In the delicate normative balance, at European Union (EU) level of the borderline products (i.e., between plant protectants and bio-fertilizers/bio-effectors) containing microbial consortia (MC) instead of single microbial strains, the most relevant factors influencing the categorization of the products are the intention of use, the cell density and the mode of action. For the latter, the basic difference between the two types of products is that a plant protectant has a targeted activity on plant pathogens, while a bio-fertilizer acts indirectly by nourishing and fortifying the host plant (healthier plant), thus inducing a generalized resistance to the onset of pathological status, irrespective of its origin and nature. Case-studies are presented on the effectiveness of MC as bio-fertilizers/bio-effectors on different crops. Bio-fertilizers exhibit a double effect--biotic and abiotic, leading to the fortification of the crop plant linked to its more effective water and nutrient uptakes as well asto a generalized healthier status. This in turn leads to a higher resistance to diseases. In addition, bio-fertilizers play a relevant role on the reduction of environmental impacts due to chemical fertilizers, e.g., by facilitating the uptake of phosphorus (P), thus reducing the need of P fertilization. Although finding a scientifically-based balance between regulatory need and marketing constraint is not always an easy task, the availability of scientific advancements combined to common sense should help in describing positive effects and risk profiles of MC in agriculture.展开更多
A theoretical analysis of the electricity production of a photovoltaic solar power plant of 22 MW for different sites in Senegal is presented. The study is carried out in two coastal regions (Dakar and Saint-Louis) an...A theoretical analysis of the electricity production of a photovoltaic solar power plant of 22 MW for different sites in Senegal is presented. The study is carried out in two coastal regions (Dakar and Saint-Louis) and two continental regions (Mbacké and Linguère). This study is done using the RET Screen clean energy project management software climate data. The amount of electricity exported to the grid is calculated for each site. The results show that the climatic conditions of the coastal and continental regions are different from November to June. From July to October, which corresponds to the rainy season in Senegal, the climatic conditions of the coastal and continental regions are similar. The results also show that although the efficiency of photovoltaic modules is better on the coast, electricity production varies little from one site to another. Climate conditions in Senegal therefore have no impact on electricity production.展开更多
文摘Dry eye disease(DED),a chronic multifactorial illness of the ocular surface with itching,burning,irritation,eye fatigue and ocular inflammation,may result in potential damage,such as cornea and conjunctiva,and even decreased vision.With the global prevalence of DED on the rise,it is crucial to find treatment options with minimal side effects.Natural plant products have shown promise in alleviating DED symptoms and may serve as a potential approach for its treatment.However,their application as instilled drugs is limited by solubility,stability and biological barriers.This review summarizes recent studies(published in the last 5 years)on natural plant products and their derivatives for the treatment of DED,focusing on efficacy,mechanism,drug delivery systems.Meanwhile,their shortcomings are also discussed.By exploring these aspects,we find polyphenol,flavonoid and others natural plant products can effectively improve or treat DED by different mechanisms,and suitable delivery system and structural modification can enhance their therapeutic effect,suggesting they are likely to become candidates for the treatment of DED.
文摘[Objective]The aim was to establish the linear regression prediction models between sowing time and plant productivity, biological yield of forage sorghum in autumn idle land.[Method]The relationships between sowing time and plant productivity, biological yield of forage sorghum were simulated and compared by using field experiment and linear regression analysis.[Result] The sowing time had an important influence on the plant productivity and biological yield of forage sorghum in autumn idle land. The plant productivity and biological yield of forage sorghum both decreased with the delay of sowing time.The regression model between plant fresh weight and sowing time was ?fresh=0.618-0.015x; the regression model between plant dry weight and sowing time was ?dry=0.184-0.005x; and the regression model between biological yield and sowing time was yield=29 126.461-711.448x. During July 23rd to August 30th, when the sowing time was delayed by 1 day, the plant fresh weight of forage sorghum was reduced by 0.015 g, the plant dry weight was reduced by 0.005 g, and the yield was reduced by 711.448 kg/hm2. [Conclusion] The three regression models established in this study will provide theoretical support for the production of forage sorghum.
文摘This review discusses the bioefficacy of natural products(derived from neem and other tropical trees) which have been used against insect pests and diseases attacking forest trees in India.These products are effective,cheaper and eco-friendly and act as antifeedant,repellent,sterility inducing,toxic or regulate insect growth.Integration of these products in forest pest management strategies would enhance the sustainability of forests and prevent the deterioration of wood quality.
基金Supported by National Natural Science Foundation of China(31200419)the"Twelfth Five-Year Plan"Science and Technology Research Project of Jilin Provincial Department of Education(2015-366)Innovation and Entrepreneurship Training Program for College Students of Jilin Province(201610205043)
文摘A pot experiment was conducted by putting ameliorants,the products of plants fermented by lactobacillus,and sandy soil into alkaline-saline soil. After such blending,the soil physicochemical properties and the growth index of Alfalfa seedlings were measured in order to explore the influence of the blending on alkaline-saline soil and the growth of alfalfa seedlings. The results showed that soil p H decreased significantly after adding ameliorant; mixing ameliorant and sandy soil into alkaline-saline soil reduced soil evaporation and increased the germination rate of alfalfa seeds and their chlorophyll content as well as the seedling height,root length of alfalfa seedlings,but it had no significant effect on alfalfa seedlings' biomass and leaf number; besides,excessive ameliorant would inhibit the growth of alfalfa seedlings.
基金Supported by Special Fund for Agro-scientific Researchin the Public Interest(20120304201)
文摘[ Objective] This study was conducted to investigate the relationship between each of planting density and row spacing and plant productivity of forage sweet sorghum planted in autumn idle land. [ Methods] Using split-plot experiment design experiment method and LSD method of IBM. SPSS. Statistics. v22 statistics software, the effects of planting density and row spacing on plant productivity of forage sweet sorghum planted in autumn idle land were compared. [ Result] The results showed that the planting density and row spacing had important influences on plant productivity of forage sweet sorghum planted in autumn idle land. Moreover, the optimal combination of plant productivity for A1B4 , i. e. ,under the combination of the planting density of 7.5 × 10^4 plants/hm^2 and the row spacing of 40 cm, the fresh weight and dry weight per plant were 654.37 and 147.11 g/plant, respectively. [ Conclusion ] The results provided a theoretical basis for the production of forage sweet sorghum in autumn idle land.
文摘The emissions of greenhouse gasses in Egypt are about 0.58% of the total emissions of the world in the year 2015, although Egypt is one of the countries most affected by the impacts of climate change. By assessment and analysis of the expected economic impacts of climate change by the year 2030, the Egyptian cultivated area will be reduced to about 0.949 million acres, equal to about 8.22% of the Egyptian cultivated area compared with the case of no sinking part of the Delta land, thus reducing crop area in Egypt to about 1.406 million acres, approximately to about 6.25% of crop area compared with the case of no sinking part of the Delta land, in addition to surplus in the Egyptian balance water to about 2.48 billion m3. In this case value of the Egyptian agriculture production will decrease by about 6.19 billion dollars, equal to about 6.19% compared with presumably no sinking of the Delta land. In the case of sinking 15% of Delta lands, with the change of the productivity and water consumption of most crops, the result will be a reduction in the cultivated area to about 0.94 million acres. In addition to decreasing the Egyptian crop area to about 1.39 million acres, with a deficit in the Egyptian balance water to about 4.74 billion m3 compared to the case of no sinking part of the Delta land, the cultivated area will decrease to about 8.17%, and the crop area will decrease 6.18%. Also, the value of the Egyptian agriculture production will decrease by about 12.51%. While compared to sinking part of the Delta land to about 15% of the total Delta area without the other impacts of climate change, the cultivated area will increase by about 0.06%;the crop area will increase by about 0.08%;also, the value of the Egyptian agriculture production will decrease by about 5.57%.
文摘For centuries, plants and plant-based products have been used as a valuable and safe natural source of medicines for treating various ailments. The therapeutic potential of most of these plants could be ascribed to their anticancer, antidiabetic, hepatoprotective, cardioprotective, antispasmodic, analgesic and various other pharmacological properties. However, several commonly used plants have been reported to adversely affect male reproductive functions in wildlife and humans. The effects observed with most of the plant and plant-based products have been attributed to the antispermatogenic and/or antisteroidogenic properties of one or more active ingredients. This review discusses the detrimental effects of some of the commonly used plants on various target cells in the testis. A deeper insight into the molecular mechanisms of action of these natural compounds could pave the way for developing therapeutic strategies against their toxicity.
文摘A model of a potentially effective type energy-resource-saving of optimization of agro-technologies, based on the principle subordination of synergetics, was established. There was developed computer system energy-resource-saving optimization of agricultural technologies. The main feature of crop production is provided by the plants which themselves are self-organizing organisms. This allows us to adopt the principle of subordination of synergetics as the basis of the model. The value of free energy at the input into plants, estimated by the process of photosynthesis, is equal to the value of “radiation exergy for plant growth”. Assessment of the use of radiation energy is carried out based on the energy-converting characteristics of plants, which were obtained in climate chambers under controlled conditions. We used the model based on the principle of subordination of synergetics to develop common quantitative mutually agreed definitions of the main agroecological variables: Agroclimatic and Meliorative potentials of lands, their fertility, and potential (maximum) productivity of plants under different environment conditions.
基金supported by Henan Provincial Department of Education(No.21B350001)Zhengzhou science and technology department(No.ZZSZX202109 and ZZSZX202108).
文摘Although solar exposure is necessary for human health,phototoxicology induced by excessive UVB and UVA radiation,which involves sunburns,skin aging and even tu-morigenesis,has been widely researched.Sunscreen is one of the most important ways to protect skin from UV phototoxic damage.As well as inorganic and organic UV filters,some natural products or plant extracts with aromatic rings in their structures,such as flavonoids or polyphenols,can absorb UV to reduce sunburn,acting as a natu-ral UV filter;they also show antioxidant or/and anti-inflammatory activity.This could explain why,although there are no officially approval natural commercial sun-filters,more and more commercial sunscreen products containing plant extracts are avail-able on the market.Here we summarize articles focusing on natural UV filters from plant published in the last 6 years,selecting the most significant data in order to better understand the photoprotective activity of natural products and extracts from plants,including their major constituents and main biological effects,methods for evaluating UV radiation resistance,anti-UV radiation experimental models and anti-UV radiation mechanisms.
基金supported by funding from the MaxPlanck Society (A.R.F.)the European Union’s Horizon 2020 research and innovation program, project PlantaSYST (Y.Z. and A.R.F.)
文摘The tricarboxylic acid(TCA) cycle is one of the canonical energy pathways of living systems, as well as being an example of a pathway in which dynamic enzyme assemblies, or metabolons, are well characterized. The role of the enzymes have been the subject of saturated transgenesis approaches, whereby the expression of the constituent enzymes were reduced or knocked out in order to ascertain their in vivo function.Some of the resultant plants exhibited improved photosynthesis and plant growth, under controlled greenhouse conditions. In addition, overexpression of the endogenous genes, or heterologous forms of a number of the enzymes, has been carried out in tomato fruit and the roots of a range of species, and in some instances improvement in fruit yield and postharvest properties and plant performance, under nutrient limitation, have been reported, respectively. Given a number of variants, in nature, we discuss possible synthetic approaches involving introducing these variants, or at least a subset of them, into plants. We additionally discuss the likely consequences of introducing synthetic metabolons, wherein certain pairs of reactions are artificially permanently assembled into plants, and speculate as to future strategies to further improve plant productivity by manipulation of the core metabolic pathway.
文摘Understanding the determinants of ranging patterns in species susceptible to habitat fragmentation is fundamental for assessing their long-term adaptability to an increasingly human-dominated landscape.The aim of this study was to determine and compare the influence of ground-based food availability,remotely sensed plant productivity,and indigenous forest use on the ranging patterns of the endangered samango monkey(Cercopithecus albogularis schwarzi).We collected monthly ranging data on two habituated samango monkey groups,from February 2012 to December 2016,from our field site in the Soutpansberg Mountains,South Africa.We used linear mixed models to explore how food availability,plant productivity,and indigenous forest use influenced monthly ranging patterns,while controlling for group size,number of sample days and day length.We found that as more areas of high plant productivity(derived from remotely sensed EVI)were incorporated into the ranging area,both total and core monthly ranging areas decreased.In addition,both total ranging area and mean monthly daily path length decreased as more indigenous forest was incorporated into the ranging area.However,we found no effect of either ground-based food availability or remotely sensed plant productivity on ranging patterns.Our findings demonstrate the behavioral flexibility in samango monkey ranging,as samangos can utilize matrix habitat during periods of low productivity but are ultimately dependent on access to indigenous forest patches.In addition,we highlight the potential of using remotely sensed areas of high plant productivity to predict ranging patterns in a small ranging,forest-dwelling guenon,over ground-based estimates of food availability.
基金This work was supported by the National Key Research and Development Program of China(2018YFA0901800)the National Natural Science Foundation of China(No.21736002).
文摘Plant natural products are a kind of active substance widely used in pharmaceuticals and foods.However,the current production mode based on plant culture and extraction suffer complex processes and severe concerns for environmental and ecological.With the increasing awareness of environmental sustainability,engineered microbial cell factories have been an alternative approach to produce natural products.Many engineering strategies have been utilized in microbial biosynthesis of complex phytochemicals such as dynamic control and substructure engineering.Meanwhile,Enzyme engineering including directed evolution and rational design has been implemented to improve enzyme catalysis efficiency and stability as well as change promiscuity to expand product spectra.In this review,we discussed recent advances in microbial biosynthesis of complex phytochemicals from the following aspects,including pathway construction,strain engineering to boost the production.
基金supported by the Global Environmental Foundation (The grassland program of Xinjiang province,China)
文摘The biodiversity-productivity relationship is an important topic in the research of biodiversity and ecosystem function. The plant diversity productivity pattern is commonly unimodal and positively correlated. This paper researches the characteristics of plant diversity-productivity patterns in the Bayanbuluk alpine steppe in the central Tianshan Mountains, Xinjiang, China, and analyzes the effects of environmental factors on the distribution of plant communities, species composition, plant diversity and productivity in the steppe. The results show a positive correlation between plant diversity and productivity. DCCA (detrended canonical correspondence analysis) ordination reveals a significant relationship between the effects of air temperature, soil moisture content, available soil nitrogen, relative humidity and pH value on the distribution and composition of plant communities. There are significant correlations between the soil moisture content, relative humidity, pH value, air temperature and species richness and the aboveground biomass of Gramineae and Cyperaceae, and also significant correlations between the relative humidity, pH values and the total aboveground biomass of plant communities.
基金a part of the ‘Korea Big Tree Project’ funded by the Korea Green Promotion Agency,Korea Forest Service
文摘We examined patterns of plant species richness on an elevation gradient and evaluated the effects of cli- matic variables including mean annual temperature and precipitation, area, the mid-domain effect and productivity on species richness along two transects on Mt. Seorak, South Korea. A total of 235 plant species of 72 families and 161 genera were recorded from 130 plots along the two transects. Two different patterns, monotonic decline and a unimodal shape, were observed for woody plants with the change in elevation along the two transects, whereas multimodal patterns were observed for all plant species considered together and for herbaceous plants. Area and productivity showed significant relationships with total plant richness. Climatic variables were better predictors than other variables for variation by elevation in woody plant richness, whereas productivity was a more important variable for herbaceous plant richness. Although area was an important variable for predicting species richness pat- terns, the effects differed by transect and plant group. No empirical evidence was linked to the mid-domain effect.Different elevational patterns may characterize different groups in the same taxon and there might be fundamental differences in the mechanisms underlying these richness patterns.
基金supported by the Program of National High Technology Research and Development,Ministry of Science and Technology,China(Grant No.2010AA101301)the Program of Introducing Talents of Discipline to University in China(Grant No.B08025)+1 种基金the Program of Introducing International Advanced Agricultural Science and Technology in China(Grant No.2006-G8[4]-31-1)the Program of Science-Technology Basis and Conditional Platform in China(Grant No.505005)
文摘To provide genetic information and materials for breeding hybrid japonica rice with wide adaptability and strong competitive advantage of yield, elite alleles and their carrier varieties of growth duration (GD) and productive panicle number per plant (PN) were detected. A natural population composed of 94 japonica varieties was phenotyped for the GD, PN and plant height (PH) in two environments. The conditional phenotypic data were transferred by the linear model method in software QGAStation 1.0, and association mapping based on the unconditional and conditional phenotype values of GD and PN was analyzed by using general linear model in software TASSEL. A total of 34 simple sequence repeat (SSR) marker loci associated with GD and PN were detected in the two environments. Among them, 15 were associated with GD, and 19 were associated with PN. Four elite alleles of RM8095-120bp, RM7102-176bp, RM72-170bp and RM72-178bp were associated with GD, and their carrier varieties were Hongmangshajing, Nipponbare, Hongmangshajing and Nannongjing 62401, respectively. These elite alleles from the carrier varieties can shorten GD by 2.03-9.93 d when they were introduced into improved materials. RM72-182bp associated with PN was an elite allele, and its carrier variety was Xiaoqingzhong. It can increase PN by three when introduced into improved materials. Moreover, these elite alleles can be used to improve target traits without influencing another two traits.
基金Supported by the Item of Benxi Meteorological Bureau,China(BQ201002)
文摘[Objective]The research aimed to study the response of plant climatic productivity to warming and drying tendency in Huanren in the past 58 years.[Method]Based on the temperature and precipitation data in Huanren from 1953 to 2010,using trend analysis,Thornthwaite Memorial model and Mann-Kendall detection method,change characteristics of climate and plant climatic productivity in Huanren were analyzed,and the regression evaluation model between plant climatic productivity and temperature and precipitation was established.[Result]Annual average temperature in Huanren presented a significant upward trend,and its linear tendency rate was 0.29℃/10 a;annual precipitation presented a decreasing trend,and its linear tendency rate was-13.29 mm/10 a;dryness presented a declining trend.The warming and drying trend was obvious in Huanren.Plant climatic productivity presented a significant increasing trend,and its linear tendency rate was 8.39 g/(m2·10 a).Plant climatic productivity was closely related to precipitation and temperature.[Conclusion]The research could provide basis and reference for the adjustment of agricultural structure and sufficiently playing the advantages of climate resources in Huanren.
文摘In the delicate normative balance, at European Union (EU) level of the borderline products (i.e., between plant protectants and bio-fertilizers/bio-effectors) containing microbial consortia (MC) instead of single microbial strains, the most relevant factors influencing the categorization of the products are the intention of use, the cell density and the mode of action. For the latter, the basic difference between the two types of products is that a plant protectant has a targeted activity on plant pathogens, while a bio-fertilizer acts indirectly by nourishing and fortifying the host plant (healthier plant), thus inducing a generalized resistance to the onset of pathological status, irrespective of its origin and nature. Case-studies are presented on the effectiveness of MC as bio-fertilizers/bio-effectors on different crops. Bio-fertilizers exhibit a double effect--biotic and abiotic, leading to the fortification of the crop plant linked to its more effective water and nutrient uptakes as well asto a generalized healthier status. This in turn leads to a higher resistance to diseases. In addition, bio-fertilizers play a relevant role on the reduction of environmental impacts due to chemical fertilizers, e.g., by facilitating the uptake of phosphorus (P), thus reducing the need of P fertilization. Although finding a scientifically-based balance between regulatory need and marketing constraint is not always an easy task, the availability of scientific advancements combined to common sense should help in describing positive effects and risk profiles of MC in agriculture.
文摘A theoretical analysis of the electricity production of a photovoltaic solar power plant of 22 MW for different sites in Senegal is presented. The study is carried out in two coastal regions (Dakar and Saint-Louis) and two continental regions (Mbacké and Linguère). This study is done using the RET Screen clean energy project management software climate data. The amount of electricity exported to the grid is calculated for each site. The results show that the climatic conditions of the coastal and continental regions are different from November to June. From July to October, which corresponds to the rainy season in Senegal, the climatic conditions of the coastal and continental regions are similar. The results also show that although the efficiency of photovoltaic modules is better on the coast, electricity production varies little from one site to another. Climate conditions in Senegal therefore have no impact on electricity production.