The soybean rhizosphere has a specific microbial community,but the differences in microbial community structure between different soybean genotypes have not been explained.The present study analyzed the structure of t...The soybean rhizosphere has a specific microbial community,but the differences in microbial community structure between different soybean genotypes have not been explained.The present study analyzed the structure of the rhizosphere microbial community in three soybean genotypes.Differences in rhizosphere microbial communities between different soybean genotypes were verified using diversity testing and community composition,and each genotype had a specific rhizosphere microbial community composition.Co-occurrence network analysis found that different genotype plant hosts had different rhizosphere microbial networks.The relationship between rhizobia and rhizosphere microorganisms in the network also exhibited significant differences between different genotype plant hosts.The ecological function prediction found that different genotypes of soybean recruited the specific rhizosphere microbial community.These results demonstrated that soybean genotype regulated rhizosphere microbial community structure differences.The study provides a reference and theoretical support for developing soybean microbial inoculum in the future.展开更多
Lead and Zn uptake and chemical changes in rhizosphere soils of four emergent-rooted wetland plants;Aneilema bracteatum,Cyperus alternifolius,Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two e...Lead and Zn uptake and chemical changes in rhizosphere soils of four emergent-rooted wetland plants;Aneilema bracteatum,Cyperus alternifolius,Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two experiments:(1) rhizobag filled with "clean" or metal-contaminated soil for analysis of Pb and Zn in plants and rhizosphere soils;and (2) applied deoxygenated solution for analyzing their rates of radial oxygen loss (ROL).The results showed that the wetland plants with different ROL rates had significant effects on the mobility and chemical forms of Pb and Zn in rhizosphere under flooded conditions.These effects were varied with different metal elements and metal concentrations in the soils.Lead mobility in rhizosphere of the four plants both in the "clean" and contaminated soils was decreased,while Zn mobility was increased in the rhizosphere of the "clean" soil,but decreased in the contaminated soil.Among the four plants,V.serpyllifolia,with the highest ROL,formed the highest degree of Fe plaque on the root surface,immobilized more Zn in Fe plaque,and has the highest effects on the changes of Zn form (EXC-Zn) in rhizosphere under both "clean" and contaminated soil conditions.These results suggested that ROL of wetland plants could play an important role in Fe plaque formation and mobility and chemical changes of metals in rhizosphere soil under flood conditions.展开更多
The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by co...The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities.展开更多
Positive associations between alpine cushion plants and other species have been extensively studied.However,almost all studies have focused on the associations between macrofauna.Studies that have investigated positiv...Positive associations between alpine cushion plants and other species have been extensively studied.However,almost all studies have focused on the associations between macrofauna.Studies that have investigated positive associations between alpine cushion plants and rhizospheric microbes have been limited to the vegetation growing season.Here,we asked whether the positive effects that alpine cushion plants confer on rhizospheric microbe communities vary with seasons.We assessed seasonal variations in the bacterial diversity and composition in rhizosphere of two alpine cushion plants and surrounding bare ground by employing a high throughput sequencing method targeting the V3 region of bacterial 16 S rRNA genes.Soil properties of the rhizosphere and the bare ground were also examined.We found that cushion rhizospheres harbored significantly more C,N,S,ammonia nitrogen,and soil moisture than the bare ground.Soil properties in cushion rhizospheres were not notably different,except for soil pH.Bacterial diversities within the same microhabitats did not vary significantly with seasons.We concluded that alpine cushion plants had positive effects on the rhizospheric bacterial communities,even though the strength of the effect varied in different cushion species.Cushion species and the soil sulfur content were probably the major factors driving the spatial distribution and structure of soil bacterial communities in the alpine communities dominated by cushion plants.展开更多
Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathoge...Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.展开更多
Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils....Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils. Here, we report the application ofa PCR primer sets targeting genes encoding the main antibiotic groups. Distribution of the genes was variably distributed across type strains of 28 species with no phylogenetic groupingfor the detected antibioticsgenes, phlD for 2,4-diacetylphloroglucinol (2,4-DAPG) and phzCD for phenazine-1-carboxylic acid or hcnBC for hydrogen cyanide production. Analysis of field soils showed that primer sets for phlD and phzCD detected these genes in a fallowed neutral pH soil following wheat production, but that the copy numbers were below the detection limits in bulk soils having an acidic pH. In contrast, PCR products for the phzCD, pltc and hcnBc genes were detectable in mature root zones following plantingwith wheat. The ability to rapidly characterize populations of antibiotics producers using specific primer sets will improve our ability to assess the impacts of management practices on the functional traits of Pseudomonas spp. populations in agricultural soils.展开更多
Plant genotypic difference of pot assiu m-enr ich ment capab ility and p ot assi um (K ) d ist rib ut ion at root-soil ioterface of different plant genotypes were studied by using seven plant species and eight varieti...Plant genotypic difference of pot assiu m-enr ich ment capab ility and p ot assi um (K ) d ist rib ut ion at root-soil ioterface of different plant genotypes were studied by using seven plant species and eight varieties oftobacco (Nicotiana tabacum L.). The results indicated that K enrichment capability was: Ethiopian guizotia(Guizotia abyssinica Cass.)>feather cockscomb (Celosia arpentea L.)>alligator alternanthera (Alternantheraphiloxeroides (Mart.) Griseb.)> tobacco>sesbania (Sesbania cannabina (Retz.) Pers.)>wheat (Thticumaestivum L.)>broadbean (Vicia faba L.). Ethiopian guizotia showed very high K-enrichment capability atdifferent soil K levels, and the K content in its dry matter was over 110 mg kg-1 when soil K was fullysupplied, and about 60 mg kg-1 when no K fertilizer was applied. For alligator alternanthera, the capabilityto accumulate K was closely related with its growth medium. When it was grown on soils, both the K contentand K uptake rate of the plant were similar to those of tobacco. Evident K dep1etion was observed in therhizosphere of all plant species, and the depletion rate was related to the capability of K enrichment of plant.展开更多
In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Ac...In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorns calamus,Typha orientalis,Iris pseudacorus)were investigated at a relatively normal temperature range of15to25The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH).It is found that T.orientalis achieves the highest nitrification intensity of2.03m g(h?kg)while the second is I.pseudacorrs(1.74m g/(h?kg)),and followed by A.calamus(1.65m g/(h?kg))throughout the experiment.FISH reveals that the abundance of bacteria(1010g_1wet soil)is higher than that of archaea(109g_1wet soil),and AOBare the dominant bacteria in the ammonia oxidation process.The abundance of AOB in te rhizosphere soils from high to low T.orientalis(1.88x1010g"1),I pseudacorus(1.23x1010g1),A.calamus(5.07x109g"1)while the abundance of AOA from high to low ae I.pseudacorus(4.00x109g1),A.calamus(3.52x109g"1),T.orientalis(3.48x109g"1).The study provides valuable evidence of plant selection for nitrogen removal in CWs.展开更多
Nitrogen is an essential component in forest ecosystem nutrient cycling.Nitrogen fractions,such as dissolved nitrogen,ammonium,nitrate,and microbial biomass nitrogen,are sensitive indicators of soil nitrogen pools whi...Nitrogen is an essential component in forest ecosystem nutrient cycling.Nitrogen fractions,such as dissolved nitrogen,ammonium,nitrate,and microbial biomass nitrogen,are sensitive indicators of soil nitrogen pools which affect soil fertility and nutrient cycling.However,the responses of nitrogen fractions in forest soils to organic mulching are less well understood.The rhizosphere is an important micro-region that must be considered to better understand element cycling between plants and the soil.A field investigation was carried out on the effect of mulching soil in a 15-year-old Ligustrum lucidum urban plantation.Changes in total nitrogen and nitrogen fractions in rhizosphere and bulk soil in the topsoil(upper 20 cm)and in the subsoil(20-40 cm)were evaluated following different levels of mulching,in addition to nitrogen contents in fine roots,leaves,and organic mulch.The relationships between nitrogen fractions and other measured variables were analysed.Organic mulching had no significant effect on most nitrogen fractions except for the rhizosphere microbial biomass nitrogen(MBN),and the thinnest(5 cm)mulching layer showed greater effects than other treatments.Rhizosphere MBN was more sensitive to mulching compared to bulk soil,and was more affected by soil environmental changes.Season and soil depth had more pronounced effects on nitrogen fractions than mulching.Total nitrogen and dissolved nitrogen were correlated to soil phosphorus,whereas other nitrogen fractions were strongly affected by soil physical properties(temperature,water content,bulk density).Mulching also decreased leaf nitrogen content,which was more related to soil nitrogen fractions(except for MBN)than nitrogen contents in either fine roots or organic mulch.Frequent applications of small quantities of organic mulch contribute to nitrogen transformation and utilization in urban forests.展开更多
Microbial attributes were compared between soil fauna gut and plant rhizosphere.•Manure applications decreased or increased gut or rhizosphere bacterial diversity.•Stochastic or deterministic processes drove gut or rh...Microbial attributes were compared between soil fauna gut and plant rhizosphere.•Manure applications decreased or increased gut or rhizosphere bacterial diversity.•Stochastic or deterministic processes drove gut or rhizosphere bacterial assembly.•Manure applications increased bacterial network complexity of gut and rhizosphere.Diverse microbes inhabit animals and plants,helping their hosts perform multiple functions in agricultural ecosystems.However,the responses of soil fauna gut and plant rhizosphere microbiomes to livestock manure applications are still not well understood.Here we fed Protaetia brevitarsis larvae(PBL)with chicken manure and collected their frass.The frass and manure were applied as fertilizers to lettuce pots.We then compared the changes of microbial diversity,community assembly,and potential functions between the gut group(i.e.,all PBL gut and frass samples)and the rhizosphere group(i.e.,all rhizosphere soil samples).We revealed that manure applications(i.e.,feeding or fertilization)decreased bacterial diversity in the gut group but increased that in the rhizosphere group.Particularly,the proportions of Bacilli in the gut group and Gammaproteobacteria in the rhizosphere group were increased(up to a maximum of 33.8%and 20.4%,respectively)after manure applications.Stochastic and deterministic processes dominated community assembly in the gut and rhizosphere microbiomes,respectively.Manure applications increased the microbial co-occurrence network complexity of both the gut and rhizosphere groups.Moreover,the proportions of functional taxa associated with human/animal pathogens in the gut group and carbon/nitrogen cycling in the rhizosphere group were enhanced(up to 2.6-fold and 24.6-fold,respectively).Our findings illustrate the different responses of microbial diversity,community assembly,and potential functions in soil fauna gut and plant rhizosphere to manure applications.The results could enhance our knowledge on the reasonable utilization of animal and plant microbiomes in agricultural management.展开更多
A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs an...A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg^-1 soil). Results indicated that plant growth of the two cultivars was not advérsely affected at soil Zn level ≤ 8 mmol kg^-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 μg g^-1 in Aris and 583.9 μg g^-1 in Tede in response to 16 mmol Zn kg^-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg^-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.展开更多
Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with t...Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.展开更多
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ...Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.展开更多
Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified(GM) plants, especial for tree species. We used the ampl...Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified(GM) plants, especial for tree species. We used the amplitude sequencing method to analyze the V4 regions of the 16 S r RNA gene to identify changes in bacterial diversity and community structure in two GM lines(D520 and D521), one non-genetically modified(nonGM) line and in uncultivated soil. After chimera filtering,468.133 sequences in the domain Bacteria remained. There were ten dominant taxonomic groups(with [1 % of all sequences) across the samples. 241 of 551 genera(representing a ratio of 97.33 %) were common to all samples.A Venn diagram showed that 1.926 operational taxonomic units(OTUs) were shared by all samples. We found a specific change, a reduction in Chloroflexi, in the microorganisms in the rhizosphere soil planted with poplars. Taken together, the results showed few statistical differences in the bacterial diversity and community structure between the GM line and non-GM line, this suggests that there was no or very limited impact of this genetic modification on the bacterial communities in the rhizosphere.展开更多
Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential...Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.Methods:We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau,China.We propose a root-soil interaction-based framework encompassing key components including soil N supply,microbial N transformation,and root N uptake in the rhizosphere.Results:We highlight that,(i)a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply;(ii)ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects,providing a driving force for scavenging soil N;(iii)a complementary pattern of plant uptake of different soil N forms via root-and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.Conclusions:Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests.Finally,we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes.展开更多
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture,...Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.展开更多
Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise ...Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise were identified to five genera Dyella,Luteimonas,Euterobacter,Paraburkholderia and Bacillus based on the sequences of16 S rRNA gene.All the strains were isolated from nondisturbed stands.These bacteria significantly decreased germination time and increased sprout sizes.Indole acetic acid and gibberellin production and phosphate solubilisation were detected.Results indicate that these biochemicals could be essential for P.chiapensis distribution and suggest the possibility that PGPR inoculation on P.chiapensis seeds prior to planting could improve germination and possibly seedling development.展开更多
Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecolo...Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.展开更多
基金funded by the Key Research and Development Projects of Heilongjiang Province, China (GA21B007 and GZ20210014)the Basic Research Fees of Universities in Heilongjiang Province, China (135409103)。
文摘The soybean rhizosphere has a specific microbial community,but the differences in microbial community structure between different soybean genotypes have not been explained.The present study analyzed the structure of the rhizosphere microbial community in three soybean genotypes.Differences in rhizosphere microbial communities between different soybean genotypes were verified using diversity testing and community composition,and each genotype had a specific rhizosphere microbial community composition.Co-occurrence network analysis found that different genotype plant hosts had different rhizosphere microbial networks.The relationship between rhizobia and rhizosphere microorganisms in the network also exhibited significant differences between different genotype plant hosts.The ecological function prediction found that different genotypes of soybean recruited the specific rhizosphere microbial community.These results demonstrated that soybean genotype regulated rhizosphere microbial community structure differences.The study provides a reference and theoretical support for developing soybean microbial inoculum in the future.
基金supported by the National Natural Science Foundation of China (No. 30570345,30770417)the Guangdong Natural Science Group Foundation (No.06202438)the Specialized Research Fund for the Doctoral Program of Higher Education,China (No. 20558097)
文摘Lead and Zn uptake and chemical changes in rhizosphere soils of four emergent-rooted wetland plants;Aneilema bracteatum,Cyperus alternifolius,Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two experiments:(1) rhizobag filled with "clean" or metal-contaminated soil for analysis of Pb and Zn in plants and rhizosphere soils;and (2) applied deoxygenated solution for analyzing their rates of radial oxygen loss (ROL).The results showed that the wetland plants with different ROL rates had significant effects on the mobility and chemical forms of Pb and Zn in rhizosphere under flooded conditions.These effects were varied with different metal elements and metal concentrations in the soils.Lead mobility in rhizosphere of the four plants both in the "clean" and contaminated soils was decreased,while Zn mobility was increased in the rhizosphere of the "clean" soil,but decreased in the contaminated soil.Among the four plants,V.serpyllifolia,with the highest ROL,formed the highest degree of Fe plaque on the root surface,immobilized more Zn in Fe plaque,and has the highest effects on the changes of Zn form (EXC-Zn) in rhizosphere under both "clean" and contaminated soil conditions.These results suggested that ROL of wetland plants could play an important role in Fe plaque formation and mobility and chemical changes of metals in rhizosphere soil under flood conditions.
基金Project supported by the National Natural Science Foundation of China (Nos.30370235 and 30670330)Science and Technology Commission of Shanghai (No.04DZ19304)Ministry of Education of China (No.105063)
文摘The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0505200,to Hang Sun)the Major Program of National Natural Science Foundation of China(Grant No.31590823,to Hang Sun)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20050203,to Hang Sun)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB15020302,to Jianqiang Su)the Yunnan Applied Basic Research Project(Grant No.2018FA015,to Yang Yang)
文摘Positive associations between alpine cushion plants and other species have been extensively studied.However,almost all studies have focused on the associations between macrofauna.Studies that have investigated positive associations between alpine cushion plants and rhizospheric microbes have been limited to the vegetation growing season.Here,we asked whether the positive effects that alpine cushion plants confer on rhizospheric microbe communities vary with seasons.We assessed seasonal variations in the bacterial diversity and composition in rhizosphere of two alpine cushion plants and surrounding bare ground by employing a high throughput sequencing method targeting the V3 region of bacterial 16 S rRNA genes.Soil properties of the rhizosphere and the bare ground were also examined.We found that cushion rhizospheres harbored significantly more C,N,S,ammonia nitrogen,and soil moisture than the bare ground.Soil properties in cushion rhizospheres were not notably different,except for soil pH.Bacterial diversities within the same microhabitats did not vary significantly with seasons.We concluded that alpine cushion plants had positive effects on the rhizospheric bacterial communities,even though the strength of the effect varied in different cushion species.Cushion species and the soil sulfur content were probably the major factors driving the spatial distribution and structure of soil bacterial communities in the alpine communities dominated by cushion plants.
基金financially supported by the Third Xinjiang Comprehensive Scientific Expedition (2022xjkk020605)the Xinjiang Uygur Autonomous Region Regional Coordinated Innovation Project (Shanghai Cooperation Organization Science and Technology Partnership Program) (2020E01047)supported by the Introduction Project of High-level Talents in Xinjiang Uygur Autonomous Region, China
文摘Endophytes,as crucial components of plant microbial communities,significantly contribute to enhancing the absorption of nutrients such as nitrogen and phosphorus by their hosts,promote plant growth,and degrade pathogenic fungal mycelia.In this study,an experiment was conducted in August 2022 to explore the growth-promoting potential of endophytic bacterial strains isolated from two medical plant species,Thymus altaicus and Salvia deserta,using a series of screening media.Plant samples of Thymus altaicus and Salvia deserta were collected from Zhaosu County and Habahe County in Xinjiang Uygur Autonomous Region,China,in July 2021.Additionally,the inhibitory effects of endophytic bacterial strains on the four pathogenic fungi(Fusarium oxysporum,Fulvia fulva,Alternaria solani,and Valsa mali)were determined through the plate confrontation method.A total of 80 endophytic bacterial strains were isolated from Thymus altaicus,while a total of 60 endophytic bacterial strains were isolated from Salvia deserta.The endophytic bacterial strains from both Thymus altaicus and Salvia deserta exhibited plant growth-promoting properties.Specifically,the strains of Bacillus sp.TR002,Bacillus sp.TR005,Microbacterium sp.TSB5,and Rhodococcus sp.TR013 demonstrated strong cellulase-producing activity,siderophore-producing activity,phosphate solubilization activity,and nitrogen-fixing activity,respectively.Out of 140 endophytic bacterial strains isolated from Thymus altaicus and Salvia deserta,104 strains displayed anti-fungal activity against Fulvia fulva,Alternaria solani,Fusarium oxysporum,and Valsa mali.Furthermore,the strains of Bacillus sp.TR005,Bacillus sp.TS003,and Bacillus sp.TSB7 exhibited robust inhibition rates against all the four pathogenic fungi.In conclusion,the endophytic bacterial strains from Thymus altaicus and Salvia deserta possess both plant growth-promoting and anti-fungal properties,making them promising candidates for future development as growth-promoting agents and biocontrol tools for plant diseases.
文摘Plant growth promoting pseudomonads play an important role in disease suppression and there is considerable interest in development of bio-marker genes that can be used to monitor these bacteria in agricultural soils. Here, we report the application ofa PCR primer sets targeting genes encoding the main antibiotic groups. Distribution of the genes was variably distributed across type strains of 28 species with no phylogenetic groupingfor the detected antibioticsgenes, phlD for 2,4-diacetylphloroglucinol (2,4-DAPG) and phzCD for phenazine-1-carboxylic acid or hcnBC for hydrogen cyanide production. Analysis of field soils showed that primer sets for phlD and phzCD detected these genes in a fallowed neutral pH soil following wheat production, but that the copy numbers were below the detection limits in bulk soils having an acidic pH. In contrast, PCR products for the phzCD, pltc and hcnBc genes were detectable in mature root zones following plantingwith wheat. The ability to rapidly characterize populations of antibiotics producers using specific primer sets will improve our ability to assess the impacts of management practices on the functional traits of Pseudomonas spp. populations in agricultural soils.
文摘Plant genotypic difference of pot assiu m-enr ich ment capab ility and p ot assi um (K ) d ist rib ut ion at root-soil ioterface of different plant genotypes were studied by using seven plant species and eight varieties oftobacco (Nicotiana tabacum L.). The results indicated that K enrichment capability was: Ethiopian guizotia(Guizotia abyssinica Cass.)>feather cockscomb (Celosia arpentea L.)>alligator alternanthera (Alternantheraphiloxeroides (Mart.) Griseb.)> tobacco>sesbania (Sesbania cannabina (Retz.) Pers.)>wheat (Thticumaestivum L.)>broadbean (Vicia faba L.). Ethiopian guizotia showed very high K-enrichment capability atdifferent soil K levels, and the K content in its dry matter was over 110 mg kg-1 when soil K was fullysupplied, and about 60 mg kg-1 when no K fertilizer was applied. For alligator alternanthera, the capabilityto accumulate K was closely related with its growth medium. When it was grown on soils, both the K contentand K uptake rate of the plant were similar to those of tobacco. Evident K dep1etion was observed in therhizosphere of all plant species, and the depletion rate was related to the capability of K enrichment of plant.
基金The National Natural Science Foundation of China(No.51479034,50909019)the Fundamental Research Funds for the Central Universities
文摘In order to explore the nitrogen removal process in constructed wetlands(CW s),the moisture,ammonia nitrogen(NH4+-N),nitrate nitrogen(NO3"-N)and nitrification intensity in three wetland plant rhizosphere soils(Acorns calamus,Typha orientalis,Iris pseudacorus)were investigated at a relatively normal temperature range of15to25The relative abundance of ammonia-oxidizing bacteria(AOB)and ammonia-oxidizing archaea(AOA)were also achieved using fluorescence in situ hybridization(FISH).It is found that T.orientalis achieves the highest nitrification intensity of2.03m g(h?kg)while the second is I.pseudacorrs(1.74m g/(h?kg)),and followed by A.calamus(1.65m g/(h?kg))throughout the experiment.FISH reveals that the abundance of bacteria(1010g_1wet soil)is higher than that of archaea(109g_1wet soil),and AOBare the dominant bacteria in the ammonia oxidation process.The abundance of AOB in te rhizosphere soils from high to low T.orientalis(1.88x1010g"1),I pseudacorus(1.23x1010g1),A.calamus(5.07x109g"1)while the abundance of AOA from high to low ae I.pseudacorus(4.00x109g1),A.calamus(3.52x109g"1),T.orientalis(3.48x109g"1).The study provides valuable evidence of plant selection for nitrogen removal in CWs.
基金This study was supported by the National Natural Science Foundation of China(No.31971453)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and Postgraduate Research&Practice Innovation Program of Jiangsu Province.
文摘Nitrogen is an essential component in forest ecosystem nutrient cycling.Nitrogen fractions,such as dissolved nitrogen,ammonium,nitrate,and microbial biomass nitrogen,are sensitive indicators of soil nitrogen pools which affect soil fertility and nutrient cycling.However,the responses of nitrogen fractions in forest soils to organic mulching are less well understood.The rhizosphere is an important micro-region that must be considered to better understand element cycling between plants and the soil.A field investigation was carried out on the effect of mulching soil in a 15-year-old Ligustrum lucidum urban plantation.Changes in total nitrogen and nitrogen fractions in rhizosphere and bulk soil in the topsoil(upper 20 cm)and in the subsoil(20-40 cm)were evaluated following different levels of mulching,in addition to nitrogen contents in fine roots,leaves,and organic mulch.The relationships between nitrogen fractions and other measured variables were analysed.Organic mulching had no significant effect on most nitrogen fractions except for the rhizosphere microbial biomass nitrogen(MBN),and the thinnest(5 cm)mulching layer showed greater effects than other treatments.Rhizosphere MBN was more sensitive to mulching compared to bulk soil,and was more affected by soil environmental changes.Season and soil depth had more pronounced effects on nitrogen fractions than mulching.Total nitrogen and dissolved nitrogen were correlated to soil phosphorus,whereas other nitrogen fractions were strongly affected by soil physical properties(temperature,water content,bulk density).Mulching also decreased leaf nitrogen content,which was more related to soil nitrogen fractions(except for MBN)than nitrogen contents in either fine roots or organic mulch.Frequent applications of small quantities of organic mulch contribute to nitrogen transformation and utilization in urban forests.
基金financially supported by the Science and Technology Project of Fujian Province(2022J02026)the National Natural Science Foundation of China(32171642 and 32070511).
文摘Microbial attributes were compared between soil fauna gut and plant rhizosphere.•Manure applications decreased or increased gut or rhizosphere bacterial diversity.•Stochastic or deterministic processes drove gut or rhizosphere bacterial assembly.•Manure applications increased bacterial network complexity of gut and rhizosphere.Diverse microbes inhabit animals and plants,helping their hosts perform multiple functions in agricultural ecosystems.However,the responses of soil fauna gut and plant rhizosphere microbiomes to livestock manure applications are still not well understood.Here we fed Protaetia brevitarsis larvae(PBL)with chicken manure and collected their frass.The frass and manure were applied as fertilizers to lettuce pots.We then compared the changes of microbial diversity,community assembly,and potential functions between the gut group(i.e.,all PBL gut and frass samples)and the rhizosphere group(i.e.,all rhizosphere soil samples).We revealed that manure applications(i.e.,feeding or fertilization)decreased bacterial diversity in the gut group but increased that in the rhizosphere group.Particularly,the proportions of Bacilli in the gut group and Gammaproteobacteria in the rhizosphere group were increased(up to a maximum of 33.8%and 20.4%,respectively)after manure applications.Stochastic and deterministic processes dominated community assembly in the gut and rhizosphere microbiomes,respectively.Manure applications increased the microbial co-occurrence network complexity of both the gut and rhizosphere groups.Moreover,the proportions of functional taxa associated with human/animal pathogens in the gut group and carbon/nitrogen cycling in the rhizosphere group were enhanced(up to 2.6-fold and 24.6-fold,respectively).Our findings illustrate the different responses of microbial diversity,community assembly,and potential functions in soil fauna gut and plant rhizosphere to manure applications.The results could enhance our knowledge on the reasonable utilization of animal and plant microbiomes in agricultural management.
基金Project supported by the National Natural Science Foundation of China (No. 20477032).
文摘A glasshouse experiment was conducted using a root-bag technique to study the root exudates, rhizosphere Zn fractions, and Zn concentrations and accumulations of two ryegrass cultivars (Lolium perenne L. cvs. Airs and Tede) at different soil Zn levels (0, 2, 4, 8, and 16 mmol kg^-1 soil). Results indicated that plant growth of the two cultivars was not advérsely affected at soil Zn level ≤ 8 mmol kg^-1. Plants accumulated more Zn as soil Zn levels increased, and Zn concentrations of shoots were about 540 μg g^-1 in Aris and 583.9 μg g^-1 in Tede in response to 16 mmol Zn kg^-1 soil. Zn ratios of shoots to roots across the soil Zn levels were higher in Tede than in Airs, corresponding with higher rhizosphere available Zn fractions (exchangeable, bound to manganese oxides, and bound to organic matter) in Airs than in Tede. Low-molecular-weight (LMW) organic acids (oxalic, tartaric, malic, and succinic acids) and amino acids (proline, threonine, glutamic acid, and aspartic acid, etc.) were detected in root exudates, and the concentrations of LMW organic acids and amino acids increased with addition of 4 mmol Zn kg^-1 soil compared with zero Zn addition. Higher rhizosphere concentrations of oxalic acid, glutamic acid, alanine, phenylalanine, leucine, and proline in Tede than in Airs likely resulted in increased Zn uptake from the soil by Tede than by Airs. The results suggested that genotypic differences in Zn accumulations were mainly because of different root exudates and rhizosphere Zn fractions.
文摘Plant growth-promoting rhizobacteria(PGPR)are specialized bacterial communities inhabiting the root rhizosphere and the secretion of root exudates helps to,regulate the microbial dynamics and their interactions with the plants.These bacteria viz.,Agrobacterium,Arthobacter,Azospirillum,Bacillus,Burkholderia,Flavobacterium,Pseudomonas,Rhizobium,etc.,play important role in plant growth promotion.In addition,such symbiotic associations of PGPRs in the rhizospheric region also confer protection against several diseases caused by bacterial,fungal and viral pathogens.The biocontrol mechanism utilized by PGPR includes direct and indirect mechanisms direct PGPR mechanisms include the production of antibiotic,siderophore,and hydrolytic enzymes,competition for space and nutrients,and quorum sensing whereas,indirect mechanisms include rhizomicrobiome regulation via.secretion of root exudates,phytostimulation through the release of phytohormones viz.,auxin,cytokinin,gibberellic acid,1-aminocyclopropane-1-carboxylate and induction of systemic resistance through expression of antioxidant defense enzymes viz.,phenylalanine ammonia lyase(PAL),peroxidase(PO),polyphenyloxidases(PPO),superoxide dismutase(SOD),chitinase andβ-glucanases.For the suppression of plant diseases potent bio inoculants can be developed by modulating the rhizomicrobiome through rhizospheric engineering.In addition,understandings of different strategies to improve PGPR strains,their competence,colonization efficiency,persistence and its future implications should also be taken into consideration.
基金the National Key Research and Development Program of China(No.2017YFE0119100)the National Natural Science Foundation of China(No.42107513)the Key Research and Development Program of Gansu(No.21YF5FA151)。
文摘Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR.
基金financially supported by the National High-Tech Research and Development Program of China,863Program(Grant No.2011AA100201)the National Forestry Public Welfare Research Project of China(Grant No.201004004)
文摘Microbe communities in rhizosphere ecosystems are important for plant health but there is limited knowledge of them in the rhizospheres of genetically modified(GM) plants, especial for tree species. We used the amplitude sequencing method to analyze the V4 regions of the 16 S r RNA gene to identify changes in bacterial diversity and community structure in two GM lines(D520 and D521), one non-genetically modified(nonGM) line and in uncultivated soil. After chimera filtering,468.133 sequences in the domain Bacteria remained. There were ten dominant taxonomic groups(with [1 % of all sequences) across the samples. 241 of 551 genera(representing a ratio of 97.33 %) were common to all samples.A Venn diagram showed that 1.926 operational taxonomic units(OTUs) were shared by all samples. We found a specific change, a reduction in Chloroflexi, in the microorganisms in the rhizosphere soil planted with poplars. Taken together, the results showed few statistical differences in the bacterial diversity and community structure between the GM line and non-GM line, this suggests that there was no or very limited impact of this genetic modification on the bacterial communities in the rhizosphere.
基金supported jointly by the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(No.2019QZKK0301)the Chinese Academy of Sciences(CAS)Interdisciplinary Innovation Team(No.xbzg-zysys-202112)+1 种基金the National Natural Science Foundation of China(Nos.32171757,31872700)Bartosz Adamczyk acknowledges the Academy of Finland(No.330136)。
文摘Background:Alpine coniferous forest ecosystems dominated by ectomycorrhizal(ECM)tree species are generally characterized by low soil nitrogen(N)availability but stabilized plant productivity.Thus,elucidating potential mechanisms by which plants maintain efficient N acquisition is crucial for formulating optimized management practices in these ecosystems.Methods:We summarize empirical studies conducted at a long-term field monitoring station in the alpine coniferous forests on the eastern Tibetan Plateau,China.We propose a root-soil interaction-based framework encompassing key components including soil N supply,microbial N transformation,and root N uptake in the rhizosphere.Results:We highlight that,(i)a considerable size of soil dissolved organic N pool mitigates plant dependence on inorganic N supply;(ii)ectomycorrhizal roots regulate soil N transformations through both rhizosphere and hyphosphere effects,providing a driving force for scavenging soil N;(iii)a complementary pattern of plant uptake of different soil N forms via root-and mycorrhizal mycelium-pathways enables efficient N acquisitions in response to changing soil N availability.Conclusions:Multiple rhizosphere processes abovementioned collaboratively contribute to efficient plant N acquisition in alpine coniferous forests.Finally,we identify several research outlooks and directions to improve the understanding and prediction of ecosystem functions in alpine coniferous forests under on-going global changes.
文摘Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and promote plant growth by producing and secreting various chemical regulators in the rhizosphere. With the recent interest in sustainable agriculture, an increasing number of researchers are investigating ways to improve the efficiency of PGPR use to reduce chemical fertilizer inputs needed for crop production. Accordingly, greenhouse studies were conducted to evaluate the impact of PGPR inoculants on biomass production and nitrogen (N) content of corn (Zea mays L.) under different N levels. Treatments included three PGPR inoculants (two mixtures of PGPR strains and one control without PGPR) and five N application levels (0%, 25%, 50%, 75%, and 100% of the recommended N rate of 135 kg N ha−1). Results showed that inoculation of PGPR significantly increased plant height, stem diameter, leaf area, and root morphology of corn compared to no PGPR application under the same N levels at the V6 growth stage, but few differences were observed at the V4 stage. PGPR with 50% of the full N rate produced corn biomass and N concentrations equivalent to or greater than that of the full N rate without inoculants at the VT stage. In conclusion, mixtures of PGPR can potentially reduce inorganic N fertilization without affecting corn plant growth parameters. Future research is needed under field conditions to determine if these PGPR inoculants can be integrated as a bio-fertilizer in crop production nutrient management strategies.
基金supported by SEP,Grant DSA/103.5/15/10976 and VIEP-BUAP,Grant 20 Sub-Program。
文摘Rhizosphere soil samples of three Pinus chiapensis sites were analyzed for their physicochemical properties,soil bacteria isolated and screened in vitro for growthpromoting abilities.Nine isolates that showed promise were identified to five genera Dyella,Luteimonas,Euterobacter,Paraburkholderia and Bacillus based on the sequences of16 S rRNA gene.All the strains were isolated from nondisturbed stands.These bacteria significantly decreased germination time and increased sprout sizes.Indole acetic acid and gibberellin production and phosphate solubilisation were detected.Results indicate that these biochemicals could be essential for P.chiapensis distribution and suggest the possibility that PGPR inoculation on P.chiapensis seeds prior to planting could improve germination and possibly seedling development.
基金Supported by Hebei Provincial Key R&D projects(21327306D)Hebei Provincial Key R&D projects(20326807D)Chengde Science and Technology Research and Development Planning Project(202103B003).
文摘Plant growth-promoting bacteria(PGPBs)can promote plant growth and improve crop yield.They can induce plant systemic resistance to resist biotic and abiotic stresses.In recent years,with the development of green ecological agriculture,new biological fertilizers such as microbial inocula and microbial fertilizers based on PGPBs have been gradually applied in crop planting.Based on plant growth promotion and disease control,the application progress of PGPBs in crops from the aspects of growth promotion mechanism,growth promotion effect,resistance to biological and abiotic stresses were discussed,aiming to provide reference for the relevant research and application of PGPBs in crops.