期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Response of 14C-Salicylic Acid to Heat Stress After Being Fed to Leaves of Grape Plants
1
作者 LIUYue-ping HUANGWei-dong WANGLi-jun 《Agricultural Sciences in China》 CAS CSCD 2005年第2期106-112,共7页
An experiment was conducted to investigate the response of salicylic acid as a second messenger to the heat stress in grape plants. For this purpose, all leaves of grape (Vitis vinifera×V. labrussa L. cv. Jingxiu... An experiment was conducted to investigate the response of salicylic acid as a second messenger to the heat stress in grape plants. For this purpose, all leaves of grape (Vitis vinifera×V. labrussa L. cv. Jingxiu) plants were removed except the 3rd, 4th, 5th, 6th, and 7th ones. The 5th leaf was fed with C-SA, and the 4th and 6th leaves were exposed to high 14 temperature at 40±0.5°C. It was observed that more C-SA transported out from the 5th leaf and the distribution of C-SA 14 14 in each organ of plant altered in response to heat stress. The accumulation of C-SA in both the 4th and 6th leaves being 14 exposed to high temperature was at least three times higher than that in control. The distribution of C-SA in other distal 14 leaves (the 3rd and 7th leaf) decreased, but more C-SA accumulated in stems adjacent to the 4th or 6th leaf exposed to 14 high temperature. In addition, there was more C-SA being transported upwards or downwards while the 4th and 6th 14 leaves were exposed to high temperature respectively. Therefore, our results suggested that SA was closely involved in signal transduction of heat stress in grape plants. However, the ratio of C radioactivity assayed after SA being extracted 14 to that of direct assay with apparatus was more than 70%, which indicated about 30% C was lost or catabolized during 14 transportation. 展开更多
关键词 Grape plant Heat stress C-salicylic acid Response Leaf 14
下载PDF
Expression Analysis of Aldo-Keto Reductase 1 (AKR1) in Foxtail Millet (Setaria italica L.) Subjected to Abiotic Stresses
2
作者 Tanguturi Venkata Kirankumar Kalaiahgari Venkata Madhusudhan +4 位作者 Ambekar Nareshkumar Kurnool Kiranmai Uppala Lokesh Boya Venkatesh Chinta Sudhakar 《American Journal of Plant Sciences》 2016年第3期500-509,共10页
Foxtail millet (Setaria italica L.) is a drought-tolerant millet crop of arid and semi-arid regions. Aldo-keto reductases (AKRs) are significant part of plant defence mechanism, having an ability to confer multiple st... Foxtail millet (Setaria italica L.) is a drought-tolerant millet crop of arid and semi-arid regions. Aldo-keto reductases (AKRs) are significant part of plant defence mechanism, having an ability to confer multiple stress tolerance. In this study, AKR1 gene expression was studied in roots and leaves of foxtail millet subjected to different regimes of PEG- and NaCl-stress for seven days. The quantitative Real-time PCR expression analysis in both root and leaves showed upregulation of AKR1 gene during PEG and salt stress. A close correlation exits between expression of AKR1 gene and the rate of lipid peroxidation along with the retardation of growth. Tissue-specific differences were found in the AKR1 gene expression to the stress intensities studied. The reduction in root and shoot growth under both stress conditions were dependent on stress severity. The level of lipid peroxidation as indicated by MDA formation was significantly increased in roots and leaves along with increased stress levels. Finally, these findings support the early responsive nature of AKR1 gene and seem to be associated at least in part with its ability to contribute in antioxidant defence related pathways which could provide a better protection against oxidative stress under stress conditions. 展开更多
关键词 Aldo-Keto Reductase Lipid Peroxidation Reactive Carbonyls Cellular Homeostasis Plant Abiotic Stress Response
下载PDF
TRAF proteins as key regulators of plant development and stress responses
3
作者 Hua Qi Fan-Nv Xia +1 位作者 Shi Xiao Juan Li 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第2期431-448,共18页
Tumor necrosis factor receptor-associated factor(TRAF)proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles.They are characterized by their C-termin... Tumor necrosis factor receptor-associated factor(TRAF)proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles.They are characterized by their C-terminal region(TRAF-C domain)containing seven to eight antiparallelβ-sheets,also known as the meprin and TRAF-C homology(MATH)domain.Over the past few decades,significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants.Compared to other eukaryotic species,the Arabidopsis thaliana and rice(Oryza sativa)genomes encode many more TRAF/MATH domaincontaining proteins;these plant proteins cluster into five classes:TRAF/MATH-only,MATH-BPM,MATH-UBP(ubiquitin protease),Seven in absentia(SINA),and MATH-Filament and MATHPEARLI-4 proteins,suggesting parallel evolution of TRAF proteins in plants.Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes,such as vegetative and reproductive development,autophagosome formation,plant immunity,symbiosis,phytohormone signaling,and abiotic stress responses.Here,we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses. 展开更多
关键词 AUTOPHAGY E3 ubiquitin ligase hormone signaling plant development plant stress responses protein adaptor TRAF family proteins
原文传递
Phosphatidic acid plays key roles regulating plant development and stress responses 被引量:8
4
作者 Hong-Yan Yao Hong-Wei Xue 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第9期851-863,共13页
Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an importan... Phospholipids, including phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PC), phosphatidylserine (PS) and phosphoinositides, have emerged as an important class of cellular messenger molecules in various cellular and physiological processes, of which PA attracts much attention of researchers. In addition to its effect on stimulating vesicle trafficking, many studies have demonstrated that PA plays a crucial role in various signaling pathways by binding target proteins and regulating their activity and subcellular localization. Here, we summarize the functional mechanisms and target proteins underlying PA-mediated regulation of cellular signaling, development, hormonal responses, and stress responses in plants. 展开更多
关键词 PA ABA Phosphatidic acid plays key roles regulating plant development and stress responses
原文传递
Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack 被引量:43
5
作者 Junsheng Qi Chun-Peng Song +4 位作者 Baoshan Wang Jianmin Zhou Jaakko Kangasjarvi Jian-Kang Zhu Zhizhong Gong 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2018年第9期805-826,共22页
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a com... Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. 展开更多
关键词 ROS Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack ABA
原文传递
WRKY transcription factors in plant responses to stresses 被引量:81
6
作者 Jingjing Jiang Shenghui Ma +3 位作者 Nenghui Ye Ming Jiang Jiashu Cao Jianhua Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2017年第2期86-101,共16页
The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes ... The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress, Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mecha- nisms. However, very li2ttle summarization has been done to review their research progress. Not iust important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senes- cence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses. 展开更多
关键词 WRKY transcription factors in plant responses to stresses
原文传递
Understanding Plant Development and Stress Responses through Integrative Approaches 被引量:1
7
作者 Katie Dehesh Chun-Ming Liu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2010年第4期350-353,共4页
As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible r... As the name reflects, integrative plant biology is the core topic of JIPB. In the past few years JIPB has been pursuing the development of this area, to assist the scientific community to bring together all possible research tools to understand plant growth, development and stress responses in micro- and macro-scales. As part of these efforts, JIPB and Yantai University organized the 1st International Symposium on Integrative Plant Biology in the seaside town of Yantai during August 10-12, 2009 (Figure 1) The symposium was co-sponsored by Botanical Society of China, Chinese Society for Cell Biology, Genetics Society of China, and Chinese Society for Plant Physiology. 展开更多
关键词 Understanding Plant Development and Stress Responses through Integrative Approaches SDG gene As COI
原文传递
Future challenges in understanding ROS in plant responses to abiotic stress 被引量:1
8
作者 Kun Li Yuli Du Yuchen Miao 《Science China(Life Sciences)》 SCIE CAS CSCD 2016年第12期1343-1344,共2页
Plants must cope with a variety of environmental stresses.Most types of abiotic stresses,such as drought,salinity,flooding,heat and cold stress,disrupt the metabolic balance of cells,resulting in the enhanced producti... Plants must cope with a variety of environmental stresses.Most types of abiotic stresses,such as drought,salinity,flooding,heat and cold stress,disrupt the metabolic balance of cells,resulting in the enhanced production of reactive oxygen species(ROS).While being well-known as a toxic by-product,recent studies about ROS focus on their roles as signaling molecules.It has been reported that ROS functions in plant cell proliferation and cell expansion,root 展开更多
关键词 ROS Future challenges in understanding ROS in plant responses to abiotic stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部