期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert,Northwest China
1
作者 ZHANG Jun ZHANG Yuanming ZHANG Qi 《Journal of Arid Land》 SCIE CSCD 2024年第5期699-724,共26页
Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host... Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants. 展开更多
关键词 phyllosphere epiphytic bacteria phyllosphere epiphytic fungi community structure community diversity functional diversity plant life form plant functional traits
下载PDF
Do aeolian deposits and sand encroachment intensity shape patterns of vegetation diversity and plant functional traits in desert pavements?
2
作者 M'hammed BOUALLALA Souad NEFFAR +1 位作者 Lyès BRADAI Haroun CHENCHOUNI 《Journal of Arid Land》 SCIE CSCD 2023年第6期667-694,共28页
The effects of sand encroachment on composition,diversity,and functional patterns of vegetation in drylands are rarely studied,and yet addressing these aspects is important to deepen our understanding of the biodivers... The effects of sand encroachment on composition,diversity,and functional patterns of vegetation in drylands are rarely studied,and yet addressing these aspects is important to deepen our understanding of the biodiversity conservation.This study aimed to investigate the effect of sand encroachment on plant functional biodiversity of desert pavements(gravel deserts)in the Sahara Desert of Algeria.Plants were sampled and analyzed in three desert pavements with different levels of sand encroachment(LSE)and quantity of aeolian deposits(low,LLSE;medium,MLSE;and high,HLSE).Within the sample-plot area(100 m^(2)),density of every plant species was identified and total vegetation cover was determined.Plant taxonomic and functional diversity were analyzed and compared between LSE.Result showed that 19 plant species in desert pavements were classified into 18 genera and 13 families.Asteraceae and Poaceae were the most important families.The species Anabasis articulata(Forssk)Moq.characterized LLSE desert pavements with 11 species,whereas Thymelaea microphylla Coss.&Durieu ex Meisn.and Calobota saharae(C&D)Boatwr.&van Wyk were dominant species of desert pavements with MLSE(14 species)and HLSE(10 species),respectively.The highest values of species richness and biodiversity were recorded in desert pavements with MLSE,while low values of these ecological parameters were obtained in desert pavements with HLSE.Desert pavements with LLSE were characterized with the highest values of species abundances.Plant communities were dominated by chamaephytes,anemochorous,arido-active,and competitive stress-tolerant plants.The increase in LSE along the gradient from LLSE to HLSE induced significant changes in plant community variables including decreases in plant density,plant rarity,lifeform composition,morphological type,and aridity adaptation.Desert pavements with HLSE favor the degradation of vegetation and trigger biodiversity erosion. 展开更多
关键词 desert pavements hot and arid rangeland plant diversity land degradation sand encroachment plant functional trait Sahara Desert
下载PDF
Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau 被引量:19
3
作者 MA WeiLing SHI PeiLi +4 位作者 LI WenHua HE YongTao ZHANG XianZhou SHEN ZhenXi CHAI SiYue 《Science China(Life Sciences)》 SCIE CAS 2010年第9期1142-1151,共10页
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species,belonging to three common functional groups (forbs,grasses and sedges) at subalpine (3700 m ASL),alpine (4300 m ASL) and subniva... Plant traits and individual plant biomass allocation of 57 perennial herbaceous species,belonging to three common functional groups (forbs,grasses and sedges) at subalpine (3700 m ASL),alpine (4300 m ASL) and subnival (≥5000 m ASL) sites were examined to test the hypothesis that at high altitudes,plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts,especially storage organs,as altitude increases,so as to geminate and resist environmental stress.However,results indicate that some divergence in biomass allocation exists among organs.With increasing altitude,the mean fractions of total biomass allocated to aboveground parts decreased.The mean fractions of total biomass allocation to storage organs at the subalpine site (7%±2% S.E.) were distinct from those at the alpine (23%±6%) and subnival (21%±6%) sites,while the proportions of green leaves at all altitudes remained almost constant.At 4300 m and 5000 m,the mean fractions of flower stems decreased by 45% and 41%,respectively,while fine roots increased by 86% and 102%,respectively.Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation,while sedges showed opposite trends.For all three functional groups,leaf area ratio and leaf area root mass ratio decreased,while fine root biomass increased at higher altitudes.Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots,while the proportion of leaves remained stable.It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots.In contrast to forbs and grasses that had high mycorrhizal infection,sedges had higher single leaf area and more root fraction,especially fine roots. 展开更多
关键词 Qinghai-Tibetan Plateau climate stress biomass allocation shoot/root ratio plant traits fine roots
原文传递
Changes in species composition, diversity and biomass of herbaceous plant traits due to N amendment in a dry tropical environment of India 被引量:2
4
作者 Punita Verma R.Sagar +2 位作者 Hariom Verma Preeti Verma Dharmendra K.Singh 《Journal of Plant Ecology》 SCIE 2015年第3期321-332,共12页
Aim European and North american studies have suggested that nitrogen(N)depositions reduce plant diversity and increase primary pro-ductivity due to changes in plant traits.To predict the vegetation response to future ... Aim European and North american studies have suggested that nitrogen(N)depositions reduce plant diversity and increase primary pro-ductivity due to changes in plant traits.To predict the vegetation response to future global change,experimental validations from other regions are widely needed.We assessed the effects of N treat-ment by urea fertilization on the diversity and biomass of the her-baceous plant traits(HPTs)in a dry tropical environment of India.Methods Diversity and biomass of different HPTs were determined on the basis of data collected in year 2010,from 135,1 m×1 m plots dis-tributed over 15 locations.The plots were treated with urea fertilizer in different doses(Control,60 kgNha−1 yr−1 and 120 kg N ha−1yr−1)since 1st January 2007.The plots were ordinated and data were subjected to appropriate statistical analyses.Important Findings Correspondence analysis(Ca)suggested uniqueness of species composition due to N amendment.species number and biomass of the trait categories varied due to N fertilization and traits.all studied trait categories(except N-fixers)yielded maximum mean species number at moderate level of N fertilization.Different levels of N fer-tilization exhibited different species diversity-primary productivity(D-P)relationships.Further,study showed reduction in plant diver-sity due to increase in biomass at high rates of N addition.Conclusions Tall,erect,non N-fixers,annuals,grasses HPTs were favoured by N enrichment.N dose above 60 kg enhanced the biomass of fast grow-ing,erect,annuals,non N-fixers,nitrophilic HPTs.The changes in traits with N addition,especially the increase in annuals and grasses and decrease in typically N-rich N-fixers,have implications for sus-tainable cattle production. 展开更多
关键词 BIOMASS Ca ordination dry tropics N amendment herbaceous plant traits primary productivity species diversity
原文传递
Plant traits related to leaf decomposition processes in arid ecosystems of northern Patagonia
5
作者 Marlene I.Bär Lamas Analía L.Carrera Mónica B.Bertiller 《Journal of Plant Ecology》 SCIE CSCD 2019年第2期216-227,共12页
Aims Plants play an important role in ecosystem processes.Functional meaning of trait variation in wide environmental gradients is well known but is scarcely known across narrow gradients.We analyze the variation of m... Aims Plants play an important role in ecosystem processes.Functional meaning of trait variation in wide environmental gradients is well known but is scarcely known across narrow gradients.We analyze the variation of morphological,physical and chemical traits of dom-inant plant species and the potential rates of dry mass loss and N release/immobilization during senesced leaf decomposition of these species across a narrow aridity gradient,and to identify indicative traits useful to set species functional groups sharing decomposition patterns.Methods We analyzed the variation of morphological,physical and chemical traits(specific leaf area,seed mass,N and soluble phenols in green and senesced leaves,plant height)in dominant plant species at 12 sites across an aridity gradient in northern Patagonia,Argentina.We collected senesced leaves of each plant species at each site and used them to estimate the poten-tial rates of dry mass loss and N release/immobilization from decomposing senesced leaves in a microcosm experiment.We analyzed the variation of plant traits and decomposition rates across the aridity gradient.We grouped plants species accord-ing to growth forms(perennial grasses,deciduous shrubs,ever-green shrubs)and different combinations of morpho-physical and chemical traits of green and senesced leaves and compared the potential rates of dry mass loss and N release/immobiliza-tion during leaf decomposition among these groups delimited by each grouping criteria.Important Findings Plant traits did not vary across the aridity gradient.The potential rate of dry mass loss was positively related to aridity,while the potential rate of N release/immobilization did not vary across the gradient.Grouping species by separately morpho-physical and chemical traits resulted in a large overlapping in mean values of decomposition rates among groups.In contrast,plant groupings based on growth forms and those including all morpho-physical and chemical traits of green or senesced leaves yielded groups with differentiated rates of decomposition processes.The two latter groupings clustered spe-cies from more than one growth form indicating some overlapping in the rates of decomposition processes among species of different growth forms.Among traits,N concentration in senesced leaves and plant height explained the highest variation in decomposition rates being positively related to potential rates of dry mass loss and N release/immobilization.We concluded that plant groupings based on morpho-physical and chemical traits of either green or senesced leaves may be more powerful to differentiate functional species groups sharing decomposition patterns than the growth form group-ing.Moreover,plant height and N concentration in senesced leaves may be considered relevant synthetic functional traits in relation to decomposition processes in narrow aridity gradients. 展开更多
关键词 mass loss morpho-physical and chemical plant traits N release/immobilization rate plant growth forms
原文传递
Endophytic bacteria associated with halophyte Seidlitzia rosmarinus Ehrenb.ex Boiss.from saline soil of Uzbekistan and their plant beneficial traits
6
作者 Vyacheslav SHURIGIN Dilfuza EGAMBERDIEVA +5 位作者 LI Li Kakhramon DAVRANOV Hovik PANOSYAN Nils-Kåre BIRKELAND Stephan WIRTH Sonoko D BELLINGRATH-KIMURA 《Journal of Arid Land》 SCIE CSCD 2020年第5期730-740,共11页
Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance.Therefore,an understanding of the true nature of plant-microbe interactions under extreme conditions is essential.The current stud... Endophytic bacteria of halophytic plants play essential roles in salt stress tolerance.Therefore,an understanding of the true nature of plant-microbe interactions under extreme conditions is essential.The current study aimed to identify cultivable endophytic bacteria associated with the roots and shoots of Seidlitzia rosmarinus Ehrenb.ex Boiss.grown in the salt-affected soil in Uzbekistan and to evaluate their plant beneficial traits related to plant growth stimulation and stress tolerance.Bacteria were isolated from the roots and the shoots of S.rosmarinus using culture-dependent techniques and identified by the 16S rRNA gene.RFLP(Restriction Fragment Length Polymorphism)analysis was conducted to eliminate similar isolates.Results showed that the isolates from the roots of S.rosmarinus belonged to the genera Rothia,Kocuria,Pseudomonas,Staphylococcus,Paenibacillus and Brevibacterium.The bacterial isolates from the shoots of S.rosmarinus belonged to the genera Staphylococcus,Rothia,Stenotrophomonas,Brevibacterium,Halomonas,Planococcus,Planomicrobium and Pseudomonas,which differed from those of the roots.Notably,Staphylococcus,Rothia and Brevibacterium were detected in both roots and shoots,indicating possible migration of some species from roots to shoots.The root-associated bacteria showed higher levels of IAA(indole-3-acetic acid)synthesis compared with those isolated from the shoots,as well as the higher production of ACC(1-aminocyclopropane-1-carboxylate)deaminase.Our findings suggest that halophytic plants are valuable sources for the selection of microbes with a potential to improve plant fitness under saline soils. 展开更多
关键词 endophytic bacteria phylogenetic analysis HALOPHYTE AUXIN plant beneficial traits
下载PDF
Evaluation of cotton germplasm for morphological and biochemical host plant UPdates resistance traits against sucking insect pests complex
7
作者 RIZWAN Muhammad ABRO Saifullah +4 位作者 ASIF Muhammad Usman HAMEED Amjad MAH BOOB Wajid DEHO Zaheer Ahmed SIAL Mahboob Ali 《Journal of Cotton Research》 2021年第3期211-218,共8页
Background:Sucking insect pests cause severe damage to cotton crop production.The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses.Considering the r... Background:Sucking insect pests cause severe damage to cotton crop production.The development of insect resistant cotton cultivars is one of the most effective measures in curtailing the yield losses.Considering the role of morphological and biochemical host plant resista nee(HPR)traits in plant defense,12 cotton genotypes/varieties were evaluated for leaf area,leaf glanding,total soluble sugars,total soluble proteins,total phenolics,tannin and total flavonoids against fluctuating populations of whitefly,thrips and jassid under field conditions.Results:The population of these insects fluctuated during the growing seas on and remained above threshold level(whitefly>5,thrips>(8-10)f or jassid>1 per leaf)during late June and early July.Strong and negative association of whitefly(r=-0.825)and jassid(r=-0.929)with seed cotton yield was observed.Mean population of insects were the highest in Glandless-1 followed by NIA-82 and NIA-M30.NIAB-Kiran followed by NI AB-878 and Sadori were the most resistant,with the mean population of 1.41,1.60,1.66(whitefly);2.24,232,2.53(thrips)and 037,0.31,036(jassid),respectively.The resistant variety NIAB-Kiran showed less soluble sugars(8.54 mg.g^(-1)),soluble proteins(27.11 mg.g^(-1))and more phenolic(36.56 mg.g^(-1))and flavonoids(13.10mg.g^(-1))as compared with the susceptible check Glandless-1.Moreover,all insect populations were positively correlated with total soluble sugars and proteins.Whitefly populations exhibited negative response to leaf gossypol glands,total phenolics,tannins and flavonoids.The thrips and jassid populations had a significant and negative correlation with these four biochemical HPR traits.Conclusion:The ide ntified resistant resources and HPR traits can be deployed against sucking in sect pests'complex in future breeding programs of developing insect resistant cotton varieties. 展开更多
关键词 GOSSYPIUM Insect resistance plant defense plant breeding Resistant traits Sucking in sects
下载PDF
Legacy effects of historical woodland changes on contemporary plant functional composition
8
作者 Ji-Zhong Wan Chun-Jing Wang 《Forest Ecosystems》 SCIE CSCD 2023年第5期569-578,共10页
Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and ant... Considering the legacy of plant functional composition can help assess ecosystem functions and ecosystem services across different spatial scales under land cover changes.Woody plants likely respond to natural and anthropogenic perturbations due to historical events(e.g.,agricultural development),thus contemporary plant functional composition may be explained by historical woodland change,a type of land cover change.We propose that historical woodland changes may have legacy effects on contemporary plant functional composition.Here,we used partial least squares regression and linear mixed model analyses to test this assumption by coupling data on community weighted means(CWM)and community weighted variance(CWV)of vegetation plots and calculating the time of woodland existence across different periods from AD 0 to 2017.We found that the legacy effects of historical land cover changes on CWM and CWV during the existence time of woodland,particularly from AD 0 to 900,were drivers of contemporary plant functional composition at large spatial scales.Furthermore,historical woodland changes can affect contemporary plant functional composition,depending on the biome type.Particularly,the CWM of plant height,seed mass,and seed length showed the strongest correlations with woodland changes from AD 1910 to 2010 in tropics with year-round rain,and the CWM of leaf traits correlated with woodland changes from AD 0 to 1700 in tropics with summer rain.Our study provides the effective evidence on the legacy of historical woodland changes and the effects on contemporary plant functional composition,which is crucial with respect to effective management of plant diversity and assessing ecosystem functions and services from local to global scales over time. 展开更多
关键词 BIOME Community weighted means Global scale Historical woodland Land cover plant functional trait
下载PDF
Regeneration of Nothofagus dombeyi(Mirb.)Ørst.in little to moderately disturbed southern beech forests in the Andes of Patagonia(Argentina)
9
作者 Stefan Zerbe Stefanie T.Storz +8 位作者 Georg Leitinger Natalia Zoe Joelson JoséBava Steffi Heinrichs Christoph Leuschner Gabriel Loguercio Alois Simon María F.Urretavizcaya Helge Walentowski 《Forest Ecosystems》 SCIE CSCD 2023年第4期472-482,共11页
Natural forests and stands subjected to little to moderate human impact are continuously declining worldwide and with these,their biodiversity and ecosystem services.Many Nothofagus forests in the south of the South A... Natural forests and stands subjected to little to moderate human impact are continuously declining worldwide and with these,their biodiversity and ecosystem services.Many Nothofagus forests in the south of the South American continent are in a pristine state or only moderately impacted by humans.Forest grazing by livestock,in the past and still today often practiced in a non-sustainable way is,however,increasingly under discussion to meet current environmental and socio-economic challenges.Accordingly,we investigate the regeneration of Nothofagus dombeyi,a keystone species of the Patagonian Andes,in secondary forests in Argentinian northern Patagonia,particularly addressing the role of disturbance through grazing by livestock at various intensities.We test the hypothesis that the regeneration of this tree species is favored by grazing impact and,thus,disturbance of the herb layer and soil surface.In support of our hypothesis,Nothofagus dombeyi regeneration was significantly higher in terms of individuals and height classes in moderately grazed forests.Multivariate analysis shows significant positive effects of moderate grazing pressure,herb layer cover,and the occurrence of bare soil on the regeneration of Nothofagus dombeyi.Our results show that an integration of livestock grazing and forest regeneration is possible and that agroforestry systems can be an adequate management option for stakeholders in the region.A grazing management can also be part of a forest fire prevention strategy.However,the regeneration success and grazing pressure should be continuously monitored. 展开更多
关键词 AGROFORESTRY Disturbance Fire management Forest grazing Forest management plant traits
下载PDF
An improved area-based approach for estimating plot-level tree DBH from airborne LiDAR data 被引量:1
10
作者 Zhengnan Zhang Tiejun Wang +3 位作者 Andrew K.Skidmore Fuliang Cao Guanghui She Lin Cao 《Forest Ecosystems》 SCIE CSCD 2023年第1期46-55,共10页
The diameter at breast height(DBH) of trees and stands is not only a widely used plant functional trait in ecology and biodiversity but also one of the most fundamental measurements in managing forests. However, syste... The diameter at breast height(DBH) of trees and stands is not only a widely used plant functional trait in ecology and biodiversity but also one of the most fundamental measurements in managing forests. However, systematically measuring the DBH of individual trees over large areas using conventional ground-based approaches is labour-intensive and costly. Here, we present an improved area-based approach to estimate plot-level tree DBH from airborne Li DAR data using the relationship between tree height and DBH, which is widely available for most forest types and many individual tree species. We first determined optimal functional forms for modelling heightDBH relationships using field-measured tree height and DBH. Then we estimated plot-level mean DBH by inverting the height-DBH relationships using the tree height predicted by Li DAR. Finally, we compared the predictive performance of our approach with a classical area-based method of DBH. The results showed that our approach significantly improved the prediction accuracy of tree DBH(R^(2)=0.85–0.90, rRMSE=9.57%–11.26%)compared to the classical area-based approach(R^(2)=0.80–0.83, rRMSE=11.98%–14.97%). Our study demonstrates the potential of using height-DBH relationships to improve the estimation of the plot-level DBH from airborne Li DAR data. 展开更多
关键词 plant functional traits Forest inventory Height-DBH relationship LiDAR structural metrics
下载PDF
Adaptive mechanisms of Ardisia crenata var.bicolor along an elevational gradient on Gaoligong Mountain,Southwest China 被引量:1
11
作者 AI Xing-mei LI Yu +1 位作者 XIE Huan ZHAO Cai-bao 《Journal of Mountain Science》 SCIE CSCD 2023年第3期765-778,共14页
Plants overcome environmental stress by generating metabolic pathways.Thus,it is crucial to understand the physiological mechanisms of plant responses to changing environments.Ardisia crenata var.bicolor has an import... Plants overcome environmental stress by generating metabolic pathways.Thus,it is crucial to understand the physiological mechanisms of plant responses to changing environments.Ardisia crenata var.bicolor has an important ornamental and medicinal value.To reveal the impact of elevational gradient on the habitat soil and plant physiological attributes of this species,we collected root topsoil(0–20 cm)and subsoil(20–40 cm)samples and upper leaves at the initial blooming phase,in a survey of six elevations at 1,257 m,1,538 m,1,744 m,1,970 m,2,135 m,and 2,376 m,with 18 block plots,and 5sampling points at each site.Temperature decreases with an increase in elevation,and soil variables,and enzymatic activities fluctuated in both the topsoil and subsoil,with all of them increasing with elevation and decreasing with soil depth.Redundancy analysis was conducted to explore the correlation between the distribution of A.crenata var.bicolor along the elevational gradient and soil nutrients and enzyme activities,the soil properties were mainly affected by p H at low elevations,and governed by total phosphorus(TP)and available nitrogen(AN)at high elevations.The levels of chlorophyll,carbohydrates,and enzymatic activity except for anthocyanin in this species showed significant variation depending on physiological attributes evaluated at the different collection elevations.The decline in chlorophyll a and b may be associated with the adaptive response to avoid environmental stress,while its higher soluble sugar and protein contents play important roles in escaping adverse climatic conditions,and the increases in activities of antioxidant enzymes except peroxidase(POD)reflect this species’higher capacity for reactive oxygen scavenging(ROS)at high elevations.This study provides supporting evidence that elevation significantly affects the physiological attributes of A.crenata var.bicolor on Gaoligong Mountain,which is helpful for understanding plant adaptation strategies and the plasticity of plant physiological traits along the elevational gradients. 展开更多
关键词 Ardisia crenata var.bicolor Adaptive distribution ELEVATION Gaoligong Mountain plant physiological trait Soil physicochemical properties
下载PDF
Importance of plant and bird traits on the seed removal pattern of endangered trees across different forest patches in southeast China 被引量:1
12
作者 Ning Li Shuai Zhang +1 位作者 Yuan-Hao Ren Zheng Wang 《Ecological Processes》 SCIE EI 2020年第1期499-504,共6页
Seed removal by birds has been recognized as an important part of seed dispersal process in patchy forest areas;however,few studies have focused on the contribution of both plant and bird traits to seed removal.In thi... Seed removal by birds has been recognized as an important part of seed dispersal process in patchy forest areas;however,few studies have focused on the contribution of both plant and bird traits to seed removal.In this study,field data of seed removal for Taxus chinensis was combined with the data of bird and plant traits for analysis.The relevant traits of plants and birds that influenced T.chinensis-bird interaction were identified in a remnant patchy forest in yew ecological garden,Fujian Province,southeast China.Twenty bird species were found to forage and remove the seeds of T.chinensis.The number of bird species varied in different forest patches;however,their contribution to seed removal showed no significant differences.Both bird and plant traits were found to affect seed removal.The seed removal rate was positively affected by bird traits,such as foraging frequency and wing length,but decreased with body weight.The plant traits,such as number of fruits,tree height,canopy density,and crown width,which are related to safe shelter and food resource conditions,increased the seed removal rate.Our results underline the functional importance of bird and plant traits in the seed removal from endangered trees in patchy forests.Therefore,future conservation strategies should prioritize and recognize the role of both plant and bird traits in seed dispersal in remnant patchy forests. 展开更多
关键词 Seed removal Bird trait plant trait Hypsipetes leucocephalus Patchy forest
原文传递
Segregation Analysis on Genetic System of Quantitative Traits in Plants 被引量:1
13
作者 Gai Junyi 《Frontiers in Biology》 CSCD 2006年第1期85-92,共8页
Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene an... Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene and pure polygene inheritance model was a specific case of the general model.Based on the proposed theory,the author established the segregation analysis procedure to study the genetic system of quantitative traits of plants.At present,this procedure can be used to evaluate the genetic effect of individual major genes(up to two to three major genes),the collective genetic effect of polygene,and their heritability value.This paper introduces how to establish the procedure,its main achievements,and its applications.An example is given to illustrate the steps,methods,and effectiveness of the procedure. 展开更多
关键词 quantitative traits of plants mixed major gene and polygene inheritance model segregation analysis
原文传递
Plant trait estimation and classification studies in plant phenotyping using machine vision - A review 被引量:3
14
作者 Shrikrishna Kolhar Jayant Jagtap 《Information Processing in Agriculture》 EI CSCD 2023年第1期114-135,共22页
Today there is a rapid development taking place in phenotyping of plants using non-destructive image based machine vision techniques.Machine vision based plant phenotyping ranges from single plant trait estimation to ... Today there is a rapid development taking place in phenotyping of plants using non-destructive image based machine vision techniques.Machine vision based plant phenotyping ranges from single plant trait estimation to broad assessment of crop canopy for thousands of plants in the field.Plant phenotyping systems either use single imaging method or integrative approach signifying simultaneous use of some of the imaging techniques like visible red,green and blue(RGB)imaging,thermal imaging,chlorophyll fluorescence imaging(CFIM),hyperspectral imaging,3-dimensional(3-D)imaging or high resolution volumetric imaging.This paper provides an overview of imaging techniques and their applications in the field of plant phenotyping.This paper presents a comprehensive survey on recent machine vision methods for plant trait estimation and classification.In this paper,information about publicly available datasets is provided for uniform comparison among the state-of-the-art phenotyping methods.This paper also presents future research directions related to the use of deep learning based machine vision algorithms for structural(2-D and 3-D),physiological and temporal trait estimation,and classification studies in plants. 展开更多
关键词 plant phenotyping Machine vision plant trait estimation Imaging techniques Leaf segmentation and counting plant classification studies
原文传递
Spatiotemporal variations in the growth status of declining wild apple trees in a narrow valley in the western Tianshan Mountains, China
15
作者 QIU Dong TAO Ye +6 位作者 ZHOU Xiaobing Bagila MAISUPOVA YAN Jingming LIU Huiliang LI Wenjun ZHUANG Weiwei ZHANG Yuanming 《Journal of Arid Land》 SCIE CSCD 2022年第12期1413-1439,共27页
Malus sieversii(wild apple tree),only distributed in the Tianshan Mountains in Central Asia,is a tertiary relic species and an ancestral species of cultivated apples.However,existing natural populations of wild apple ... Malus sieversii(wild apple tree),only distributed in the Tianshan Mountains in Central Asia,is a tertiary relic species and an ancestral species of cultivated apples.However,existing natural populations of wild apple trees have been declining.To date,spatiotemporal variations in the growth status of declining wild apple trees and influencing factors in the narrow valley areas in the Tianshan Mountains remain unclear.In this study,field investigation and sampling were carried out in three years(2016-2018)at four elevations(1300,1400,1500,and 1600 m)in the Qiaolakesai Valley(a typical longitudinal narrow valley in the Yili River Valley)of the western Tianshan Mountains in Xinyuan County,Xinjiang Uygur Autonomous Region,China.Projective coverage,dead branch percentage,and 18 twig traits(these 20 parameters were collectively referred to as plant traits)were determined to comprehensively reflect the growth status of declining wild apple trees.The values of dead branch percentage ranged from 36%to 59%,with a mean of 40%.Year generally showed higher impact on plant traits than elevation.In 2017 and 2018,projective coverage,leaf size,leaf nitrogen concentration,and nitrogen to phosphorous ratio were markedly higher than those in 2016.However,dead branch percentage and leaf and stem phosphorous concentrations showed the opposite trend.Most of the topological parameters of plant trait networks differed in the three years,but the strength of trait-trait association increased year by year.The mean difference between day and night temperatures(MDT),annual accumulative precipitation,soil electrical conductivity,and soil pH had the greatest impact on the plant trait matrix.The growth status of declining wild apple trees was directly and positively affected by MDT and leaf size.In conclusion,the growth of declining wild apple trees distributed in the narrow valley areas was more sensitive to interannual environmental changes than elevation changes.The results are of great significance for further revealing the decline mechanism of wild apple trees in the Tianshan Mountains. 展开更多
关键词 Malus sieversii plant attributes plant trait network elevation gradient meteorological factor western Tianshan Mountains
下载PDF
Does a shift in shade tolerance as suggested by seedling morphology explain differences in regeneration success of northern red oak in native and introduced ranges?
16
作者 Peter Nosko Kerri Moreau +2 位作者 Christian Kuehne Kelly C.Major Jürgen Bauhus 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第3期949-962,共14页
Across North America, forests dominated by Quercus rubra L. (northern red oak), a moderately shade-tolerant tree species, are undergoing successional replacement by shade-tolerant competitors. Under closed canopies, Q... Across North America, forests dominated by Quercus rubra L. (northern red oak), a moderately shade-tolerant tree species, are undergoing successional replacement by shade-tolerant competitors. Under closed canopies, Q. rubra seedlings are unable to compete with these shade-tolerant species and do not recruit to upper forest strata. In Europe, natural regeneration of introduced Q. rubra is often successful despite the absence of fire, which promotes regeneration in the native range. Considering that understorey light availability is a major factor affecting recruitment of seedlings, we hypothesized that Q. rubra seedlings are more shade tolerant in the introduced range than in the native range. Morphological traits and biomass allocation patterns of seedlings indicative of shade tolerance were compared for Q. rubra and three co-occurring native species in two closed-canopy forests in the native range (Ontario, Canada) and introduced range (Baden-Württemburg, Germany). In the native range, Q. rubra allocated a greater proportion of biomass to roots, while in the introduced range, growth and allocation patterns favored the development of leaves. Q. rubra seedlings had greater annual increases in height, diameter and biomass in the introduced range. Q. rubra seedlings in the introduced range were also younger;however, they had a mean area per leaf and a total leaf area per seedling that were five times greater than seedlings in the native range. Such differences in morphological traits and allocation patterns support the hypothesis that Q. rubra expresses greater shade tolerance in the introduced range, and that natural regeneration of Q. rubra is not as limited by shade as in the native range. The ability of Q. rubra seedlings to grow faster under closed canopies in Europe may explain the discrepancy in regeneration success of this species in native and introduced ranges. Future research should confirm findings of this study over a greater geographical range in native and introduced ecosystems, and examine the genetic and environmental bases of observed differences in plant traits. 展开更多
关键词 Alien species Cross-continental study Forest regeneration Introduced species Seedling morphology plant functional traits Quercus rubra
下载PDF
Role of beneficial microbial gene pool in mitigating salt/nutrient stress of plants in saline soils through underground phytostimulating signalling molecules
17
作者 Shalini TIWARI Barkha SHARMA +1 位作者 Neha BISHT Lakshmi TEWARI 《Pedosphere》 SCIE CAS CSCD 2023年第1期153-171,共19页
Soil salinity diminishes soil health and reduces crop yield,which is becoming a major global concern.Salinity stress is one of the primary stresses,leading to several other secondary stresses that restrict plant growt... Soil salinity diminishes soil health and reduces crop yield,which is becoming a major global concern.Salinity stress is one of the primary stresses,leading to several other secondary stresses that restrict plant growth and soil fertility.The major secondary stresses induced in plants under saline-alkaline conditions include osmotic stress,nutrient limitation,and ionic stress,all of which negatively impact overall plant growth.Under stressed conditions,certain beneficial soil microflora are known to have evolved phytostimulating mechanisms,such as the synthesis of osmoprotectants,siderophores,1-aminocyclopropane-1-carboxylic acid(ACC)deaminase activity,phosphate solubilization,and hormone production,which enhance plant growth and development while mitigating nutrient stress.Beneficial soil-borne bacterial species such as Bacillus,Pseudomonas,and Klebsiella and fungal strains such as Trichoderma,Aspergillus,Penicillium,Alternaria,and Fusarium also aid in reducing salinity stress.Phosphate-solubilizing microorganisms also assist in nutrient acquisition via both enzymatic and non-enzymatic processes.In the case of enzymatic processes,they produce different enzymes such as alkaline phosphatases and phytases,whereas non-enzymatic processes produce organic acids such as gluconic,citric,malic,and oxalic acids.The native halotolerant/halophilic soil microbial gene pool with multifunctional traits and stress-induced gene expression can be developed as suitable bio-inoculants to enhance stress tolerance and optimize plant growth in saline soils. 展开更多
关键词 abiotic stress crop improvement gene expression HALOTOLERANT microbial diversity phosphate solubilization plant growth promoting traits soil health
原文传递
Global multifaceted biodiversity patterns,centers,and conservation needs in angiosperms
18
作者 Ao Luo Yaoqi Li +15 位作者 Nawal Shrestha Xiaoting Xu Xiangyan Su Yichao Li Tong Lyu Kilara Waris Zhiyao Tang Xiaojuan Liu Luxiang Lin Yongsheng Chen Kuiling Zu Wenqi Song Shijia Peng Niklaus E.Zimmermann Loïc Pellissier Zhiheng Wang 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第4期817-828,共12页
The Convention on Biological Diversity seeks to conserve at least 30%of global land and water areas by 2030,which is a challenge but also an opportunity to better preserve biodiversity,including flowering plants(angio... The Convention on Biological Diversity seeks to conserve at least 30%of global land and water areas by 2030,which is a challenge but also an opportunity to better preserve biodiversity,including flowering plants(angiosperms).Herein,we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species.Using this database,we constructed biodiversity-environment models to predict global patterns of taxonomic,phylogenetic,and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets.We further evaluated the current protection status of the biodiversity centers of these diversity facets.Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities.Idiosyncratic centers of functional diversity,particularly of herbaceous species,were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets.Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms(woody vs.herbaceous),thus providing directions for guiding the future conservation of global plant diversity. 展开更多
关键词 ANGIOSPERMS species richness phylogenetic diversity functional diversity plant traits woody species herbaceous species
原文传递
Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest 被引量:6
19
作者 Christel C.Kern Rebecca A.Montgomery +1 位作者 Peter B.Reich Terry F.Strong 《Journal of Plant Ecology》 SCIE 2013年第1期92-100,共9页
Aims The Gap Partitioning Hypothesis(GPH)posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests,allowing trees with contrasting strategies to coexist along resource g... Aims The Gap Partitioning Hypothesis(GPH)posits that gaps create heterogeneity in resources crucial for tree regeneration in closed-canopy forests,allowing trees with contrasting strategies to coexist along resource gradients.Few studies have examined gap partitioning of temperate,ground-layer vascular plants.We used a ground-layer plant community of a temperate deciduous forest in northern Wisconsin,USA,as a model system to test whether the GPH extends to the relatively species-rich ground layer.Methods We used a well-replicated experimental approach that included a gap opening gradient(five gap sizes,6,10,20,30 and 46 m diameter,and undisturbed reference areas),a within-gap location gradient(gap edge to center),and a temporal gradient(0,2,6 and 13 years after gap creation).The data were observations of ground-layer plant abundance,published plant traits,and a modeled index of understory light environments.We ordinated the plant abundance data and evaluated the relationships of composition,traits and light environment by gap size,location along the forest-gap transect and time,with several approaches such as correlations,descriptive statistics,non-parametric tests of group differences and indicator species importance values.Important Findings Ground-layer plant composition and traits differed across gap sizes,within-gap locations and over time.Gaps of all sizes differed in composition from undisturbed areas,and all pair-wise combinations of gap size also differed in composition,except the 6 m from the 10-m gaps.Large gaps(46 m)also displayed within-gap compositional gradients from gap edge to center locations.Compositional differences in gap size were evident 2 years after gap creation and,contrary to our hypotheses,remained different over the 13-year period,even in gaps with crown closure.In contrast to the neutral theory,species functional traits and microenvironmental conditions were related to variation in ground-layer composition.Species with smaller seeds,lower shade tolerance,later bloom times,shorter stature and longer leaves were associated with higher light,more central gap locations,larger gap sizes and greater time since gap creation.The correlation between gap size and ground-layer plant composition and traits provides evidence for gap partitioning by the diverse ground-layer community in this temperate deciduous forest community. 展开更多
关键词 herbaceous layer experimental gaps proximity to edge functional diversity plant traits
原文传递
Plant-herbivore assemblages under natural conditions are driven by plant size,not chemical defenses
20
作者 Eva Castells Maria Morante +1 位作者 Sandra Saura-Mas Anabel Blasco-Moreno 《Journal of Plant Ecology》 SCIE CSCD 2017年第6期1012-1021,共10页
Aims Plant secondary metabolites have been traditionally recognized as key traits regulating plant-herbivore assemblages.However,the ecological relevance of secondary metabolites as resistance mecha-nisms in compariso... Aims Plant secondary metabolites have been traditionally recognized as key traits regulating plant-herbivore assemblages.However,the ecological relevance of secondary metabolites as resistance mecha-nisms in comparison to other plant attributes,including physical,morphological or ecological traits,has been recently questioned.We aim to evaluate the role of chemical defenses,plant size and the presence of insect competitors on driving the differences in her-bivory damage under natural conditions.Methods We performed a replicated field study on the herbivore commu-nity associated with four Senecio species(S.lividus,S.vulgaris,S.inaequidens and S.pterophorus)during a full-reproductive season in Montseny Natural Park(catalonia,NE Spain).Pyrrolizidine alka-loids(PAs),the most characteristic chemical defenses of Senecio due to their toxic effects on herbivores,were analyzed by gas chro-matography.Individual plant size was estimated by the number of flower heads produced over the entire reproductive season.We used linear mixed models to explore the relationships between total PA concentrations,plant size and herbivory levels.Important Findings PA concentrations were not related to the natural guild of herbivores within any plant species or insect type.Moreover,no significant interactions were found between insect species sharing the same host plants.In contrast,herbivore abundance was positively related to plant size in S.vulgaris,S.lividus and S.inaequidens.We found no evidence that PAs confer an increased plant resistance against herbivores in Senecio.Our study supports the hypothesis that plant chemical defenses have a secondary role in determining plant-her-bivore assemblages in comparison to other plant traits under the complexity of natural conditions. 展开更多
关键词 SENECIO HERBIVORY chemical defenses pyrrolizidine alkaloids plant traits
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部