期刊文献+
共找到8,157篇文章
< 1 2 250 >
每页显示 20 50 100
Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
1
作者 Guoxiang Niu Tao Liu +4 位作者 Zhen Zhao Xuebing Zhang Huiling Guan Xiaoxiang He Xiankai Lu 《Forest Ecosystems》 SCIE CSCD 2024年第2期131-139,共9页
Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SO... Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change. 展开更多
关键词 Tropical and subtropical forest soil organic matter fractions EARTHWORM MILLIPEDES litter decomposition
下载PDF
Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe,China
2
作者 YE He HONG Mei +4 位作者 XU Xuehui LIANG Zhiwei JIANG Na TU Nare WU Zhendan 《Journal of Arid Land》 SCIE CSCD 2024年第3期447-459,共13页
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio... Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe. 展开更多
关键词 soil microorganisms plant-microbial community interaction plant diversity nitrogen deposition desert steppe
下载PDF
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
3
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
Differential Expression of Genes Related to Fruit Development and Capsaicinoids Synthesis in Habanero Pepper Plants Grown in Contrasting Soil Types
4
作者 Eduardo Burgos-Valencia Federico García-Laynes +4 位作者 Ileana Echevarría-Machado Fatima Medina-Lara Miriam Monforte-González JoséNarváez-Zapata Manuel Martínez-Estévez 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第2期151-183,共33页
Habanero pepper(Capsicum chinense Jacq.)is a crop of economic relevance in the Peninsula of Yucatan.Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world,which gives the... Habanero pepper(Capsicum chinense Jacq.)is a crop of economic relevance in the Peninsula of Yucatan.Its fruits have a high level of capsaicinoids compared to peppers grown in other regions of the world,which gives them industrial importance.Soil is an important factor that affects pepper development,nutritional quality,and capsaicinoid content.However,the effect of soil type on fruit development and capsaicinoid metabolism has been little understood.This work aimed to compare the effect of soils with contrasting characteristics,black soil(BS)and red soil(RS),on the expression of genes related to the development of fruits,and capsaicinoid synthesis using a transcriptomic analysis of the habanero pepper fruits.Plants growing in RS had bigger fruits and higher expression of genes related to floral development,fruit abscission,and softening which suggests that RS stimulates fruit development from early stages until maturation stages.Fruits from plants growing in BS had enrichment in metabolic pathways related to growth,sugars,and photosynthesis.Besides,these fruits had higher capsaicinoid accumulation at 25 days post-anthesis,and higher expression of genes related to the branched-chain amino acids metabolism(ketol-acid reductisomerase KARI),pentose phosphate pathway and production of NADPH(glucose-6-phosphate-1-dehydrogenase G6PDH),and proteasome and vesicular traffic in cells(26S proteasome regulatory subunit T4 RPT4),which suggest that BS is better in the early stimulation of pathways related to the nutritional quality and capsaicinoid metabolism in the fruits. 展开更多
关键词 Capsicum chinense jacq soil types plant growth environmental conditions fruit quality capsaicinoid metabolism TRANSCRIPTOME
下载PDF
Ecological stoichiometric comparison of plant-litter-soil system in mixed-species and monoculture plantations of Robinia pseudoacacia,Amygdalus davidiana,and Armeniaca sibirica in the Loess Hilly Region of China
5
作者 Senbao Lu Yunming Chen +1 位作者 Jordi Sardans Josep Penuelas 《Forest Ecosystems》 SCIE CSCD 2023年第3期411-424,共14页
We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspeci... We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspecies plantations of Robinia pseudoacacia with Amygdalus davidiana(RPAD),R.pseudoacacia with Armeniaca sibirica(RPAS),and monocultures of R.pseudoacacia(RP),A.davidiana(AD),and A.sibirica(AS)in the Loess Hilly Region.The results showed that in mixed-species plantations,R.pseudoacacia had lower leaf N and P concentrations than in monocultures,while both A.davidiana and A.sibirica had higher leaf N and P concentrations.Soil P limited tree growth in both afforestation models.Mixing R.pseudoacacia with A.davidiana or A.sibirica reduced N-limitation during litter decomposition.Average soil total N and P concentrations were higher in RPAS than in RPAD,and both were higher than the corresponding monocultures.The average soil C:N ratio was the smallest in RPAS,while the average soil C:P ratio was larger in RPAS than in RP.A positive correlation between N and P concentrations,and between C:N and C:P ratios,was found in litter and all plant organs of mono-and mixedstands.Alternatively,for N concentration and C:N ratio,the correlations between plant(i.e.,leaf,branch,root)and litter and between plant and soil were inverse between plantation types.RPAD has an increased litter decomposition rate to release N and P,while RPAS has a faster rate of soil N mineralization.RPAD was the best plantation(mixed)to improve biogeochemical cycling,as soil nutrient restrictions,particularly for P-limitation,on trees growth were alleviated.This study thus provides insights into suitable tree selection and management by revealing C:N:P stoichiometry in the plant-litter-soil system under different afforestation patterns. 展开更多
关键词 Stoichiometry plant litter soil Tree mixture Loess Plateau
下载PDF
Changes in the root system of the herbaceous peony and soil properties under different years of continuous planting and replanting 被引量:2
6
作者 Anqi Xie Limin Sun +4 位作者 Dongliang Zhang Yang Li Zemiao Liu Xue Li Xia Sun 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期801-810,共10页
The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvl... The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvlang'variety under a continuous planting regime of one,four,and seven years,and a replanting regime of one and four years.Under the condition of continuous planting,with the increase of number of years,pH,ammonium nitrogen,and nitrate nitrogen decreased in the rhizosphere and non-rhizosphere soils,whereas organic matter,available phosphorus and potassium,enzyme activities,and the number of bacteria,fungi,and actinomycetes increased.Under the condition of replanting,with the increase of number of years,fungi and actinomycetes in both soils increased,while pH,organic matter,nutrients,enzyme activities,and bacterial number decreased.pH,organic matter,nutrient content,enzyme activity and the number of bacterial were lower in soil replanted for four years,whereas the abundance of fungi and actinomycetes was higher,altering the soil from“bacterial high-fertility”to“fungal low-fertility”with increasing years of replanting.The activity of antioxidant enzymes and MDA content in roots of peony in replanting were higher than those in continuous planting,while the content of osmotic regulatory substances in replanting was lower than that in continuous planting.The results showed that there were no obvious adverse factors in soil during seven years of continuous planting,and herbaceous peony could maintain normal growth and development.However,soils after four years of replanting were not suitable for herbaceous peony growth.Benzoic acid increased with years of replanting,which potentially caused replanting problems.This study provides a theoretical basis for understanding the mechanism of replanting problems in the herbaceous peony. 展开更多
关键词 Herbaceous peony Replanting problems Continuous planting soil environment Phenolic acids PAEONIFLORIN
下载PDF
Contribution of soil fauna to the degradation of recalcitrant components in Cinnamomum camphora foliar litter in different-sized gaps in Pinus massoniana plantations 被引量:2
7
作者 Yan Zhang Danju Zhang +1 位作者 Xun Li Jian Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期931-941,共11页
Forest gaps are important in forest dynamics and management, but little is known about how soil fauna influence the degradation of recalcitrant litter components in different-sized forest gaps. This investigation uses... Forest gaps are important in forest dynamics and management, but little is known about how soil fauna influence the degradation of recalcitrant litter components in different-sized forest gaps. This investigation uses litterbags with two different mesh sizes (0.04 and 3 mm) to control the meso- and microfauna entering the bags to quantify the contribution of soil fauna to the degradation of recalcitrant components (including condensed tannins, total phenol, lignin and cellulose) during litter decomposition. The experiment was conducted in seven different forest gap sizes in Pinus massoniana plantations over 1 year. One closed-canopy site (CC) and forest gap sizes of 100, 225, 400, 625, 900, 1225 and 1600 m^2 were created in a P. massoniana plantation in the Sichuan basin of China;the CC was treated as the control. Cinnamomum camphora foliage from local native trees was used in all forest gap experiments. We found the following:(1) Gap size had significant effects on the degradation rates (E) of condensed tannins and lignin and on the contributions of soil fauna;medium-sized gaps also presented high degradation rates. Soil fauna obviously contributed to the degradation of recalcitrant foliar litter components in medium-sized gaps.(2) The highest contribution to degradation (40.98%) was recorded for lignin, and the lowest contribution (0.29%) was recorded for condensed tannins. The results indicate that medium-sized gaps (900 m^2) were conducive to the degradation of recalcitrant litter components by soil fauna. 展开更多
关键词 CINNAMOMUM camphora FOLIAR litter Gap size Pinus massoniana RECALCITRANT litter components soil fauna
下载PDF
The amelioration of degraded larch(Larix olgensis)soil depends on the proportion of Aralia elata litter in larch-A.elata agroforestry systems
8
作者 Pingzhen Gao Jiaojun Zhu +2 位作者 Qiaoling Yan Kai Yang Jinxin Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期1065-1076,共12页
Research has indicated that introducing Aralia elata into larch plantations forms an agroforestry system which could provide economic benefi ts for local farmers and improve degraded soils.However,the impact of litter... Research has indicated that introducing Aralia elata into larch plantations forms an agroforestry system which could provide economic benefi ts for local farmers and improve degraded soils.However,the impact of litter mixtures on soil chemical and microbial properties in this agroforestry system are unclear,which limits effi cient management of the agroforestry system.A 365-d incubation experiment examined the eff ect of litter mixtures of diff erent proportions of larch(L)and A.elata(A)on soil chemical and microbial properties.The results show that levels of mineral N,available P,microbial biomass carbon and nitrogen,cumulative C mineralization,and activities of hydrolases and oxidases increased with an increase of A.elata in the litter mixtures.Concentration of total soil carbon,nitrogen,and phosphorous did not change(except for total nitrogen).Compared with larch litter alone,levels of mineral N,available P,microbial biomass carbon and nitrogen,cumulative C mineralization,and the activities of hydrolases and oxidases increased by 7.6–433.5%.Most chemical and microbial properties were positively correlated with mixed litter proportions and the initial levels of N,P,K,Ca,Mg,Mn,Zn and Cu in the litter,while negatively correlated with the initial concentrations of C,Fe and lignin,C/N and lignin/N ratios.The results indicate that A.elata litter can improve degraded larch soil and the degree depends on the proportion of A.elata litter in the litter mixtures. 展开更多
关键词 Larch-based agroforestry Incubation experiment litter mixtures litter quality soil properties
下载PDF
Response of nitrogen mineralization dynamics and biochemical properties to litter amendments to soils of a poplar plantation 被引量:2
9
作者 Xiaomin Ge Shiping Deng +4 位作者 Ling Zhu Yong Li Zhiyuan Jia Ye Tian Luozhong Tang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第4期913-922,共10页
Understanding the impact of plant litters on soil nitrogen (N) dynamics could facilitate development of management strategies that promote plantation ecosystem function. Our objective was to evaluate the effects of ... Understanding the impact of plant litters on soil nitrogen (N) dynamics could facilitate development of management strategies that promote plantation ecosystem function. Our objective was to evaluate the effects of different litter types on N mineralization and availability, microbial biomass, and activities of L-asparaginase and odiphenol oxidase (o-DPO) in soils of a poplar (Populus deltoides) plantation through 24 weeks of incubation experiments. The tested litters included foliage (F), branch (B), or root (R) of poplar trees, and understory vegetation (U) or a mixture of F, B, and U (M). Litter amendments led to rapid N immobilization during the first 4 weeks of incubation, while net N mineralization was detected in all tested soils from 6 to 24 weeks of incubation, with zero-order reaction rate constants (k) ranging from 7.7 to 9.6 mg N released kg-1 soil wk-1. Moreover, litter addition led to increased (C) 49-128% and increased microbial biomass carbon MBC:MBN ratio by 5-92%, strengthened activities of L-aspaxaginase and o-DPO by 14-74%; Up to about 37 kg N ha-1 net increase in mineralized N in litter added soils during 24 weeks of incubation suggests that adequate poplar and understory litter management could lead to reduced inputs while facilitate sustainable and economic viable plantation production. 展开更多
关键词 plant litter Nitrogen mineralization soilmicrobial biomass L-ASPARAGINASE o-diphenol oxidase
下载PDF
Leguminosae plants play a key role in affecting soil physical-chemical and biological properties during grassland succession after farmland abandonment in the Loess Plateau,China
10
作者 SUN Lin YU Zhouchang +5 位作者 TIAN Xingfang ZHANG Ying SHI Jiayi FU Rong LIANG Yujie ZHANG Wei 《Journal of Arid Land》 SCIE CSCD 2023年第9期1107-1128,共22页
Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties.However,plant composition and species diversity change rapidly during th... Leguminosae are an important part of terrestrial ecosystems and play a key role in promoting soil nutrient cycling and improving soil properties.However,plant composition and species diversity change rapidly during the process of succession,the effect of leguminosae on soil physical-chemical and biological properties is still unclear.This study investigated the changes in the composition of plant community,vegetation characteristics,soil physical-chemical properties,and soil biological properties on five former farmlands in China,which had been abandoned for 0,5,10,18,and 30 a.Results showed that,with successional time,plant community developed from annual plants to perennial plants,the importance of Leguminosae and Asteraceae significantly increased and decreased,respectively,and the importance of grass increased and then decreased,having a maximum value after 5 a of abandonment.Plant diversity indices increased with successional time,and vegetation coverage and above-and below-ground biomass increased significantly with successional time after 5 a of abandonment.Compared with farmland,30 a of abandonment significantly increased soil nutrient content,but total and available phosphorus decreased with successional time.Changes in plant community composition and vegetation characteristics not only change soil properties and improve soil physical-chemical properties,but also regulate soil biological activity,thus affecting soil nutrient cycling.Among these,Leguminosae have the greatest influence on soil properties,and their importance values and community composition are significantly correlated with soil properties.Therefore,this research provides more scientific guidance for selecting plant species to stabilize soil ecosystem of farmland to grassland in the Loess Plateau,China. 展开更多
关键词 secondary succession LEGUMINOSAE plant diversity plant community composition soil physical-chemical properties soil biological properties
下载PDF
Soil and fine root-associated microbial communities are niche dependent and influenced by copper fungicide treatment during tea plant cultivation
11
作者 Ali Inayat Mallano Jie Yu +5 位作者 Tabys Dina Fangdong Li Tiejun Ling Naveed Ahmad Jeffrey Bennetzen Wei Tong 《Horticulture Research》 SCIE CSCD 2023年第3期11-14,共4页
Dear Editor,Fungicide treatment has a profound effect on controlling plant pathogens in modern agriculture,however,it also carries the risk of undesirable outcomes.For decades,scientists have been concerned about the ... Dear Editor,Fungicide treatment has a profound effect on controlling plant pathogens in modern agriculture,however,it also carries the risk of undesirable outcomes.For decades,scientists have been concerned about the harmful impacts of heavy metals like copper(Cu)on crop performance and soil microorganisms.Use of various copper fungicides,like Bordeaux mixture,have been a component of conventional agricultural practices to control fungal and bacterial pathogens,especially in vineyards,tea gardens,or fruit tree orchards[9,10].This treatment increases the accumulation of high levels of Cu in surface soils,and despite the critical role of Cu as an essential trace element in wide biological and metabolic processes,it becomes toxic to plants when applied at high levels[4].The regular application of copper fungicides has also been linked to affecting microbial communities at the levels of diversity[8],population structure[2],abundance,and growth[1,3].Understanding the undesired effects of fungicides on microorganisms’beneficial activities is therefore important for evaluating the hazards associated with the fungicide used in agriculture.Yet,the effects of copper fungicide on full microbial communities remains relatively understudied,especially in tea plants.Thus,we herein explored the inf luence of Bordeaux mixture under different management regimes(raking or without raking leaf litter)on microbial communities of root,bulk soil,and rhizosphere compartments of tea plants planted in a ten-year-old tea garden.We provided insights into the ecological consequences of tea management practices that might help to identify specific fungicide treatment regimens,environmental characteristics,and microbial community members to minimize the negative environmental outcomes and optimize the positive anti-pathogen aspects of fungicide treatment. 展开更多
关键词 soil planted COPPER
下载PDF
The Effects of Water and Fertilizer Coupling on Plant and Soil Nitrogen Characteristics and Fruit Growth of Rabbiteye Blueberry Plants in a Semi-Arid Region in China
12
作者 Xiaolan Guo Di Zhao +3 位作者 Jinbin Hu Delu Wang Jianbin Wang Muhammad Shakeel 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期209-223,共15页
To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two facto... To evaluate the effects of nitrogen(N)and irrigation coupling on the soil N distribution,plant N utilization,and fruit yield of rabbiteye blueberries(Vaccinium virgatum),a field experiment was designed using two factors(water and fertilizer application)with four levels of irrigation and three levels of fertilization,and a control.Under the different water and fertilizer combinations,N primarily accumulated in the leaves.Irrigation and N application within appropriate ranges(pure N≤29 g/plant and irrigation volume≤2.5 L/plant)significantly improved the blueberry fruit yield.Increases in water and N within these ranges promoted the effective accumulation of N in various organs and the absorption and utilization of N in the plants,which ultimately promoted blueberry yield.With increased N application rate,the nitrate N content of the 0–20 cm and 20–50 cm soil layers increased.With increased irrigation volume,the nitrate N content of the 0–20 cm soil layer decreased,while the nitrate content in the 20–50 cm soil layer increased.Low N and moderate water treatments resulted in high fruit yields and reduced nitrate N retention in the soil.Under these conditions,the economic input-output ratio was high and the soil N accumulation was low,and thus the economic and ecological benefits were maximized. 展开更多
关键词 Vaccinium virgatum soil nitrogen distribution plant nitrogen utilization fruit yield
下载PDF
Effects of Different Planting Years on Physicochemical Properties and Enzyme Activities in Soil of Rice-Cherry Tomato Rotation
13
作者 Xiao Deng Chunyuan Wu +2 位作者 Yi Li Huadong Tan Jiancheng Su 《Open Journal of Ecology》 2023年第6期334-344,共11页
Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomat... Crop rotation periodicity has always been one of the research focuses currently. In this study, the physicochemical properties, nutrient contents and enzyme activities were investigated in soils from rice-cherry tomato rotation for one year (1a), three years (3a), five years (5a), seven years (7a) and ten years (10a), respectively. The major objective was to analyze the optimal rotation years of rice-cherry tomato from soil perspective, so as to provide theoretical basis for effectively avoiding continuous cropping obstacles of cherry tomato via studying the response characteristics of soil physicochemical properties, nutrient contents and enzyme activities to planting years of rice-cherry tomato rotation system. The results were as follows: 1) Soil pH value was increased year by year during 1a to 5a, reached the highest value 5.32 at 5a. However, soil acidity was sharply enhanced during 7a to 10a (P P •kg<sup>-1</sup> at 5a. 3) The content of soil available phosphorus was increased year by year with increasing of crop rotation years, and increased by 110% to 173% during 3a to 10a (P P P < 0.05). In conclusion, long-term single rotation pattern of rice-cherry tomato would aggravate soil acidification, prompt soil nutrient imbalance and reduce soil enzyme activity. 5a to 7a would be the appropriate rotation period for rice-cherry tomato, or else it would reduce soil quality, resulting in a new continuous cropping obstacle of cherry tomato. 展开更多
关键词 Rice-Cherry Tomato Rotation planting Years soil Physicochemical Properties Enzyme Activity
下载PDF
Evaluation of Cobalt Application Combined with Gypsum and Compost as a Regulator of Cabbage Plant Tolerance to Soil Salinity
14
作者 Abd-Elbaset A. Alkharpotly Mohamed A. E. Soliman +11 位作者 Mohamed A. El-Sherpiny Ahmed G. Baddour Dina A. Ghazi Zinab A. Abdelgawad Mohamed A. Abdein Fahad Mohammed Alzuaibr Abdulrahman Alasmari Abdulaziz Albogami Mesfer M. Alqahtani Hebat-Allah A. Hussein Fatma M. A. Elkady Mohamed F. M. Abdelkader 《Open Journal of Ecology》 2023年第12期914-930,共17页
In response to the global food crisis and the imperative to address soil degradation, the international agricultural policy is actively working to alleviate the adverse impacts of soil salinity. As part of this initia... In response to the global food crisis and the imperative to address soil degradation, the international agricultural policy is actively working to alleviate the adverse impacts of soil salinity. As part of this initiative, a field trial spanning two consecutive seasons (2019/20-2020/21) was conducted under saline conditions. The primary objective was to evaluate the influence of various compost sources, including vermicompost at a rate of 0.5 ton·fed<sup>-1</sup> and plant residues compost at a rate of 5.0 ton·fed<sup>-1</sup>, as main plots. Subplots were established by applying agricultural gypsum, both in the presence and absence of gypsum requirements. Additionally, sub-subplots were created by externally applying cobalt at a rate of 10.0 mg·L<sup>-1</sup>, with one sub-subplot receiving foliar cobalt application and the other not. The trial sought to assess the growth performance, chemical composition, enzymatic antioxidants, yield, and quality of cabbage plants (Brassica oleracea var. capitata L.) cultivated in saline soil. According to the findings, cabbage plants exhibited the most favorable response in terms of plant height, chlorophyll content, carotene levels, leaf area, nitrogen (N), phosphorus (P), potassium (K), head yield, vitamin C, and total dissolved solids (TDS) when treated with vermicompost, followed by plant compost. Conversely, plants grown without compost exhibited the least improvement in performance. Cabbage treated with agricultural gypsum requirements showed better performance than those without gypsum amendment. Moreover, plants subjected to cobalt spray demonstrated the highest growth, yield, and quality parameters compared to those without cobalt foliar application. In contrast, the control group (plants without the studied treatments) displayed the highest levels of enzymatic antioxidants, specifically catalase and peroxidase. This indicates that soil salinity stress led to an increase in catalase and peroxidase production in cabbage plants as a defense against the harmful impact of reactive oxygen species (ROS) resulting from soil salinity stress. The applied treatments (compost, gypsum, and cobalt) led to a reduction in the cabbage plant’s inherent production of catalase and peroxidase. Generally, the combined treatment of vermicompost × gypsum requirements × cobalt proved effective in mitigating the detrimental effects of soil salinity on cabbage plants. These findings hold significance for farmers and policymakers aiming to enhance agricultural productivity in regions affected by soil salinity. Additionally, further research can explore the long-term effects of these treatments on soil health and crop sustainability. 展开更多
关键词 VERMICOMPOST plant Compost Gypsum Requirements COBALT soil Health and Crop Sustainability
下载PDF
Contribution of Herbaceous Plants and Their Status and Role in Soil and Water Ecosystem
15
作者 Fazheng SUN Chengyan HUANG Rong HU 《Meteorological and Environmental Research》 CAS 2023年第5期7-10,13,共5页
In this paper,the contemporary understanding process of herbaceous plants and their contributions are elaborated.The systematic idea of"mountain,river,forest,field,lake,and grass are a community of life"has ... In this paper,the contemporary understanding process of herbaceous plants and their contributions are elaborated.The systematic idea of"mountain,river,forest,field,lake,and grass are a community of life"has led the grass to enter a new era of development.Broadly speaking,vegetation includes grassland,forest,crop,garden,etc.,while herbaceous vegetation is the most widely distributed on earth.From the macro and micro perspectives of soil and water ecology,this paper discusses the position and role of herbaceous vegetation in the earth's soil and water ecosystem,especially the fundamental position in mountain,river,forest,field,lake,grass and sand.Starting from the concept of soil and water ecology,the integrated protection and systematic management of mountain,river,forest,field,lake,grassland,and sand is proposed.Essentially,it is the protection and management of soil and water ecology,which summarizes various ecological systems on earth.The successful application of herbaceous plants in ecological restoration projects of mine has further enriched and developed the theory of soil and water ecology. 展开更多
关键词 Herbaceous plant soil and water ecosystem Theory of soil and water ecology Application
下载PDF
Contribution of aboveground litter to soil respiration in Populus davidiana Dode plantations at different stand ages 被引量:5
16
作者 ZHAO Xin LI Fa-dong +1 位作者 ZHANG Wan-jun AI Zhi-pin 《Journal of Mountain Science》 SCIE CSCD 2016年第6期1000-1012,共13页
Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle.However,variations in the contribution of aboveground litter to the total soil respiration for stands of varyin... Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle.However,variations in the contribution of aboveground litter to the total soil respiration for stands of varying ages are poorly understood.To assess soil respiration induced by aboveground litter,treatments of litter and no litter were applied to 5-,10-,and 20-year-old stands of Populus davidiana Dode in the sandstorm source area of Beijing -Tianjin,China.Optimal nonlinear equations were applied to model the combined effects of soil temperature and soil water content on soil respiration.Results showed that the monthly average contribution of aboveground litter to total soil respiration were 18.46% ± 4.63%,16.64% ± 9.31%,and 22.37% ± 8.17% for 5-,10-,and 20-year-old stands,respectively.The relatively high contribution in 5-and 20-year-old stands could be attributed to easily decomposition products and high accumulated litter,respectively.Also,it fluctuated monthly for all stand ages due to substrate availability caused by phenology and environmental factors.Litter removal significantly decreased soil respiration and soil water content for all stand ages(p < 0.05) but not soil temperature(p > 0.05).Variations of soil respiration could be explained by soil temperature at 5-cm depth using an exponential equation and by soil water content at 10-cm depth using a quadratic equation,whereas soil respiration was better modeled using the combined parameters of soil temperature and soil water content than with either soil temperature or soil water content alone.Temperature sensitivity(Q_(10))increased with stand age in both the litter and the no litter treatments.Considering the effects of aboveground litter,this study provides insights for predicting future soil carbon fluxes and for accurately assessing soil carbon budgets. 展开更多
关键词 土壤呼吸作用 凋落物分解 山杨林 地上 林龄 土壤含水量 土壤温度 垃圾处理
下载PDF
Effects of Litter Removal and Addition on Soil Nitrogen Mineralization of Eucalyptus Plantation 被引量:1
17
作者 Wanpeng LU Hongying LIU +1 位作者 Chunning LI Bin HE 《Agricultural Biotechnology》 CAS 2022年第3期109-113,共5页
[Objectives]This study was conducted to understand the process of soil nitrogen mineralization in Eucalyptus plantations,and to identify the characteristics of soil nitrogen mineralization with different litter inputs... [Objectives]This study was conducted to understand the process of soil nitrogen mineralization in Eucalyptus plantations,and to identify the characteristics of soil nitrogen mineralization with different litter inputs.[Methods]With the soil of the Eucalyptus plantation in Fusui County,Guangxi as the research object,the soil nitrogen mineralization of the Eucalyptus plantation under different litter treatments(removing litter,adding litter and retaining litter)was studied by PVC tube closed-top in-situ incubation.[Results]①After 1 year of litter treatment,the inorganic nitrogen(NH_(4)^(+)-N+NO_(3)^(-)-N)in the soil of different treatments ranked as adding litter(20.15 mg/kg)>retaining litter(16.02 mg/kg)>removing litter(11.60) mg/kg),and the differences reached a significant level(P<0.05).②After 30 d of in-situ incubation,there were significant differences in soil nitrate nitrogen content before and after incubation in the three treatments(removing litter,adding litter,and retaining litter)before and after incubation(P<0.05),but no significant differences were observed in soil ammonium nitrogen content(P>0.05).Soil nitrate nitrogen contents increased from 1.47,2.01 and 1.72 mg/kg before incubation to 3.66,6.73 and 5.02 mg/kg,respectively,and soil ammonium nitrogen content increased from 11.60,20.15 and 16.02 mg/kg before incubation to 13.65,21.54 and 17.18 mg/kg,respectively.The net nitrogen mineralization quantities of the three treatments were 4.24,6.11 and 4.46 mg/kg,respectively,and the net nitrogen mineralization rates from large to small were adding litter[0.180 mg/(kg·d)]>retaining litter[0.141 mg/(kg·d)]>removing litter[0.125 mg/(kg·d)].Therefore,both removal and addition of litter affected the soil nitrogen input and nitrogen mineralization rate of the Eucalyptus plantation,thereby affecting soil nitrogen availability and the ability of soil to maintain plant-available nitrogen.[Conclusions]This study provides a theoretical basis for nutrient management in Eucalyptus plantations,especially nitrogen nutrient management. 展开更多
关键词 Eucalyptus plantation litter PVC tube closed-top in-situ incubation soil nitrogen mineralization
下载PDF
Effectiveness of Combined Biochar and Lignite with Poultry Litter on Soil Carbon Sequestration and Soil Health
18
作者 Ardeshir Adeli John P. Brooks +3 位作者 Dana Miles Todd Mlsna Read Quentin Johnie N. Jenkins 《Open Journal of Soil Science》 2023年第2期124-149,共26页
Healthy soils are important to ensure satisfactory crop growth and yield. Poultry litter (PL), as an organic fertilizer, has proven to supply the soil with essential macro and micronutrients, enhance soil fertility, a... Healthy soils are important to ensure satisfactory crop growth and yield. Poultry litter (PL), as an organic fertilizer, has proven to supply the soil with essential macro and micronutrients, enhance soil fertility, and improve crop productivity. Integrating this treatment has the potential to improve soil physical and biological properties by increasing soil carbon, C. However, rapid decomposition and mineralization of PL, particularly in the hot and humid southeastern U.S., resulted in losing C and reduced its effect on soil health. Biochar and lignite have been proposed to stabilize and mitigate C loss through application of fresh manure. However, their combined effects with PL on C sequestration and soil health components are limited. A field experiment was conducted on Leeper silty clay loam soil from 2017 to 2020 to evaluate the combined effect on soil properties when applying biochar and lignite with PL to cotton (Gossypium hirsutum L.). The experimental design was a randomized complete block involving nine treatments replicated three times. Treatments included PL and inorganic nitrogen, N, fertilizer with or without biochar and lignite, and an unfertilized control. Application rates were 6.7 Mgkg⋅ha−1</sup> for PL, 6.7 Mgkg⋅ha−1</sup></sup> for biochar and lignite and 134 kg⋅ha−1</sup><sup></sup> for inorganic N fertilizer. Integration of PL and inorganic fertilizer with biochar and lignite, resulted in greater soil infiltration, aggregate stability, plant available water, reduced bulk density and penetration resistance as compared to the sole applications of PL and inorganic fertilizer. 展开更多
关键词 soil Health LIGNITE BIOCHAR Poultry litter
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function
19
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
Responses and feedback of litter properties and soil mesofauna to herbaceous plants expansion into the alpine tundra on Changbai Mountain,China
20
作者 ZHANG Ying-jie JIN Ying-hua +7 位作者 XU Jia-wei HE Hong-shi TAO Yan YANG Zhi-peng ZHAO Jing DIAO Yin-xia SUN Chen-hui LI Mai-He 《Journal of Mountain Science》 SCIE CSCD 2022年第2期403-417,共15页
Global climate changes result in the expansion of lower elevation plants to higher elevations.The rapid upward expansion of herbaceous plants into the alpine tundra on Changbai Mountain resulted in changes in differen... Global climate changes result in the expansion of lower elevation plants to higher elevations.The rapid upward expansion of herbaceous plants into the alpine tundra on Changbai Mountain resulted in changes in different levels of ecosystem organization.However,the responses and feedback of litter properties and soil mesofauna to herbaceous plants expansion have not been studied yet.To understand the mechanisms underlying those changes,we conducted a field experiment in the range of 2250-2300 m in the alpine tundra of the Changbai Mountain and collected a total of 288 samples from four degrees of herbaceous plants expansion to study the litter physiochemical properties,soil mesofauna,and soil nutrient contents,and their relationships in that tundra ecosystem suffered from various degrees of herbaceous invasion.We found that herbaceous plant expansion is responsible for a major shift in the dominant species of soil mesofauna from mites to collembolan and has significant impacts on the community structure(R2=0.54,p=0.001)and diversity of soil mesofauna(Shannon-Weiner index,p=0.01).The increasing herbaceous plant expansion resulted in a significant increase in litter biomass from 91 g·m^(-2) in the original tundra vegetation(OIT)to 118 g·m^(-2) in the moderately invaded tundra(MIT),and an increase in litter thickness from 2.37 cm(OIT)to 3.05 cm(MIT).And,the litter total nitrogen content significantly increased,but the values of the litter carbon content,the lignin content,the C/N ratio,and the lignin/N ratio decreased with increased herbaceous coverage(both p<0.05).The litter physical properties pathway(biomass and thickness)directly explained 31% of the total variance in soil mesofauna diversity and 59% of the total variance in soil mesofauna community composition.Furthermore,both the soil available nutrients(incl.AN and AP)and plant biomass(incl.the total plant biomass and herbs/shrubs biomass)significantly increased with increasing coverage of herbaceous plant(both p<0.05),and litter chemical properties pathway directly explained 50% of the soil nutrient content variance and indirectly explained 20% of soil nutrient by affecting soil mesofauna.We found that both soil available nutrients and soil mesofauna were positively correlated with the herbaceous expansion from OIT to MIT,indicating a positive feedback of herbaceous expansion,and the abundance of soil mesofauna decreased in the severely invaded tundra vegetation,suggesting a negative feedback.While,both litter N content and soil available nitrogen were consistently increased in the severely invaded tundra vegetation,indicating a positive feedback of herbaceous expansion.Therefore,this study provides new insights into the process of herbaceous plant expansion into tundra,and provides possible evidence for further expansion according to responses and feedback of in litter properties and soil mesofauna to herbaceous plants expansion.Furthermore,these positive or/and negative feedback systems in the Changbai alpine tundra ecosystem in relation to herbaceous expansion have important implications for the tundra protection,and thus,need to be deeply studied. 展开更多
关键词 soil mesofauna Herbaceous expansion litter properties soil nutrient content Alpine tundra Changbai Mountain
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部