Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and ...Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and K was analyzed to study the effect of nutrients variation on yield improvement in the mixed stand. The result showed that: 1) The stand level total soil N concentration and available N in the mixed stand was similar to that in the monoculture stand of ash, but higher than that in monoculture stand of larch. The total N and available N concentration in rhizosphere soil of ash in the mixed stand was similar to that in the monoculture stand of ash, but the available N concentration in rhizosphere of larch in mixed stand was much higher than in its monoculture. 2) The stand level total P, total K concentration in the mixed stand was similar to that in monocul-ture stands of both species, but available P and K was more concentrated in the mixed stand than in the monoculture stands of ash. The rhizosphere available P and K of ash in the mixed stand was 44.1% and 13.5% (for the 9-yr-old stands) and 79.6% and 25.6% (for the 21-yr-old stands) higher than that in its monoculture. The improvement of soil P and K availability in the mixed stand is concluded.展开更多
We used preliminary data to estimate the growth volume of artificially reforested Pinus densiflora in a post-fire area on three different contour conditions. We compared the growth of P. densiflora on a south-facing s...We used preliminary data to estimate the growth volume of artificially reforested Pinus densiflora in a post-fire area on three different contour conditions. We compared the growth of P. densiflora on a south-facing slope(Ssth), north-facing slope(Snth) and ridge area(Ridge), using 7 trees selected from each stand aspect. The tree height, diameter and growth volume were measured and the dry weight of each plant part were compared and analyzed. The results revealed that the total dry weight was highest on Ssth(5992.3 g), followed by Snth(4833.2 g) and lowest on Ridge(3160.1 g). The height growth was highest on Snth(285.8 cm), followed by Ssth(274.5 cm) and lowest on Ridge(211.5 cm). The diameter growth was greatest on Ssth(7.37 cm), followed by Snth(7.10 cm) and lowest on Ridge(5.72 cm). The volume growth was highest on Ssth(4257.7 cm3), followed by Snth(3750.7 cm3) and lowest on Ridge(2093.7 cm3). Therefore, we should consider and include the concept of slope orientation together with differences in habitat environments in afforestation projects when creating artificial forests with P. densiflora. These study results can serve as important preliminary data for future establishment of artificial forest of P. densiflora in a post-fire plantation.展开更多
Many aquatic habitats in coastal Oregon have been impacted by historic land use practices that led to losses of in-stream wood and associated degraded fish habitats. Many of these streams are now bordered by stands of...Many aquatic habitats in coastal Oregon have been impacted by historic land use practices that led to losses of in-stream wood and associated degraded fish habitats. Many of these streams are now bordered by stands of dense second growth forests(30–80 years) that are incorporated into riparian buffer zones with low wood recruitment and storage. Thinning in riparian zones is one management option to increase the rate of large tree growth and eventually larger in-stream wood, however, it raises concern about impacts on current wood recruitment, among other issues. Using a forest growth simulation model coupled to a model of in-stream wood recruitment, we explore riparian management alternatives in a Douglas-fir plantation in coastal Oregon. Alternatives included:(1) no treatment,(2) single and double entry thinning, without and with a 10-m buffer, and(3) thinning combined with mechanical introduction of some portion of the thinned trees into the stream(tree tipping). Compared to no treatment, single and double entry thinning on one side of a channel, without a 10-m buffer, reduce cumulative instream wood volume by 33 and 42 %, respectively, after100 years(includes decay). Maintaining a 10-m buffer reduces the in-stream wood loss to 7 %(single entry thin)and 11 %(double entry). To completely offset the losses of in-stream wood in a single entry thin(on one or both sides of the stream), in the absence or presence of a 10-m buffer,requires a 12–14 % rate of tree tipping. Relative to the notreatment alternative, cumulative in-stream wood storage can be increased up to 24 % in a double-entry thin with no buffer by tipping 15–20 % of the thinned trees(increased to 48 % if thinning and tipping simultaneously on both sides of the stream). The predicted increases in in-stream wood that can occur during a thin with tree tipping may be effective for restoring fish habitat, particularly in aquatic systems that have poor habitat conditions and low levels of in-stream wood due to historic land use activities.展开更多
A comparative discussion of the advantages and disadvantages of natural stands and plantations,including in terms of their productivity and stability,began from the moment of the first forest plantings and continues t...A comparative discussion of the advantages and disadvantages of natural stands and plantations,including in terms of their productivity and stability,began from the moment of the first forest plantings and continues to this day.In the context of the progressive replacement of natural forests by plantations due to deforestation,the question of how will change the carbon storage capacity of forest cover when replacing natural forests with artificial ones in a changing climate becomes extremely relevant.This article presents the first attempt to answer this question at the transcontinental level on a special case for two-needled pine trees(subgenus Pinus L.).The research was carried out using the database compiled by the authors on the single-tree biomass structure of forest-forming species of Eurasia,in particular,data of 1880 and 1967 of natural and plantation trees,respectively.Multi-factor regression models are calculated after combining the matrix of initial data on the structure of tree biomass with the mean January temperature and mean annual precipitation,and their adequacy indices allow us to consider them reproducible.It is found that the aboveground and stem biomass of equal-sized and equal-aged natural and plantation trees increases as the January temperature and precipitation rise.This pattern is only partially valid for the branches biomass,and it has a specific character for the foliage one.The biomass of all components of plantation trees is higher than that of natural trees,but the percent of this excess varies among different components and depends on the level of January temperatures,but does not depend at all on the level of annual precipitation.A number of uncertainties that arose during the modeling process,as well as the preliminary nature of the obtained regularities,are noted.展开更多
基金This study was supported by National Natural Science Foundation of China (Grant No. 30130160) and the Quick Response of Basic Research Supporting Program (Grant No.2102)
文摘Soil samples were taken from rhizosphere zone and off-rhizosphere zone of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) in mixed and monoculture stands, and the nutrient concentration of N, P, and K was analyzed to study the effect of nutrients variation on yield improvement in the mixed stand. The result showed that: 1) The stand level total soil N concentration and available N in the mixed stand was similar to that in the monoculture stand of ash, but higher than that in monoculture stand of larch. The total N and available N concentration in rhizosphere soil of ash in the mixed stand was similar to that in the monoculture stand of ash, but the available N concentration in rhizosphere of larch in mixed stand was much higher than in its monoculture. 2) The stand level total P, total K concentration in the mixed stand was similar to that in monocul-ture stands of both species, but available P and K was more concentrated in the mixed stand than in the monoculture stands of ash. The rhizosphere available P and K of ash in the mixed stand was 44.1% and 13.5% (for the 9-yr-old stands) and 79.6% and 25.6% (for the 21-yr-old stands) higher than that in its monoculture. The improvement of soil P and K availability in the mixed stand is concluded.
基金supported by a research grant from Yeungnam University in 2015
文摘We used preliminary data to estimate the growth volume of artificially reforested Pinus densiflora in a post-fire area on three different contour conditions. We compared the growth of P. densiflora on a south-facing slope(Ssth), north-facing slope(Snth) and ridge area(Ridge), using 7 trees selected from each stand aspect. The tree height, diameter and growth volume were measured and the dry weight of each plant part were compared and analyzed. The results revealed that the total dry weight was highest on Ssth(5992.3 g), followed by Snth(4833.2 g) and lowest on Ridge(3160.1 g). The height growth was highest on Snth(285.8 cm), followed by Ssth(274.5 cm) and lowest on Ridge(211.5 cm). The diameter growth was greatest on Ssth(7.37 cm), followed by Snth(7.10 cm) and lowest on Ridge(5.72 cm). The volume growth was highest on Ssth(4257.7 cm3), followed by Snth(3750.7 cm3) and lowest on Ridge(2093.7 cm3). Therefore, we should consider and include the concept of slope orientation together with differences in habitat environments in afforestation projects when creating artificial forests with P. densiflora. These study results can serve as important preliminary data for future establishment of artificial forest of P. densiflora in a post-fire plantation.
基金supported by the U.S.Forest Service,Pacific Northwest Research Station and Earth Systems Institute,Seattle Washington
文摘Many aquatic habitats in coastal Oregon have been impacted by historic land use practices that led to losses of in-stream wood and associated degraded fish habitats. Many of these streams are now bordered by stands of dense second growth forests(30–80 years) that are incorporated into riparian buffer zones with low wood recruitment and storage. Thinning in riparian zones is one management option to increase the rate of large tree growth and eventually larger in-stream wood, however, it raises concern about impacts on current wood recruitment, among other issues. Using a forest growth simulation model coupled to a model of in-stream wood recruitment, we explore riparian management alternatives in a Douglas-fir plantation in coastal Oregon. Alternatives included:(1) no treatment,(2) single and double entry thinning, without and with a 10-m buffer, and(3) thinning combined with mechanical introduction of some portion of the thinned trees into the stream(tree tipping). Compared to no treatment, single and double entry thinning on one side of a channel, without a 10-m buffer, reduce cumulative instream wood volume by 33 and 42 %, respectively, after100 years(includes decay). Maintaining a 10-m buffer reduces the in-stream wood loss to 7 %(single entry thin)and 11 %(double entry). To completely offset the losses of in-stream wood in a single entry thin(on one or both sides of the stream), in the absence or presence of a 10-m buffer,requires a 12–14 % rate of tree tipping. Relative to the notreatment alternative, cumulative in-stream wood storage can be increased up to 24 % in a double-entry thin with no buffer by tipping 15–20 % of the thinned trees(increased to 48 % if thinning and tipping simultaneously on both sides of the stream). The predicted increases in in-stream wood that can occur during a thin with tree tipping may be effective for restoring fish habitat, particularly in aquatic systems that have poor habitat conditions and low levels of in-stream wood due to historic land use activities.
基金The Current Scientific Research of the Ural Forest Engineering University and Botanical Garden of the Ural Branch of Russian Academy of Sciences(15-04-03-899)。
文摘A comparative discussion of the advantages and disadvantages of natural stands and plantations,including in terms of their productivity and stability,began from the moment of the first forest plantings and continues to this day.In the context of the progressive replacement of natural forests by plantations due to deforestation,the question of how will change the carbon storage capacity of forest cover when replacing natural forests with artificial ones in a changing climate becomes extremely relevant.This article presents the first attempt to answer this question at the transcontinental level on a special case for two-needled pine trees(subgenus Pinus L.).The research was carried out using the database compiled by the authors on the single-tree biomass structure of forest-forming species of Eurasia,in particular,data of 1880 and 1967 of natural and plantation trees,respectively.Multi-factor regression models are calculated after combining the matrix of initial data on the structure of tree biomass with the mean January temperature and mean annual precipitation,and their adequacy indices allow us to consider them reproducible.It is found that the aboveground and stem biomass of equal-sized and equal-aged natural and plantation trees increases as the January temperature and precipitation rise.This pattern is only partially valid for the branches biomass,and it has a specific character for the foliage one.The biomass of all components of plantation trees is higher than that of natural trees,but the percent of this excess varies among different components and depends on the level of January temperatures,but does not depend at all on the level of annual precipitation.A number of uncertainties that arose during the modeling process,as well as the preliminary nature of the obtained regularities,are noted.