期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Biomass-Based Rice (Oryza sativa L.) Aboveground Architectural Parameter Models 被引量:11
1
作者 CAO Hong-xin LIU Yan +11 位作者 LIU Yong-xia Jim Scott Hanan YUE Yan-bin ZHU Da-wei LU Jian-fei SUN Jin-ying SHI Chun-lin GE Dao-kuo WEI Xiu-fang YAO An-qing TIAN Ping-ping BAO Tai-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第10期1621-1632,共12页
To quantify the relationships between rice plant architecture parameters and the corresponding organ biomass, and to research on functional structural plant models of rice plant, this paper presented a biomass-based m... To quantify the relationships between rice plant architecture parameters and the corresponding organ biomass, and to research on functional structural plant models of rice plant, this paper presented a biomass-based model of aboveground architectural parameters of rice (Oryza sativa L.) in the young seedling stage, designed to explain effects of cultivars and environmental conditions on rice aboveground morphogenesis at the individual leaf level. Various model variables, including biomass of blade and blade length, were parameterized for rice based on data derived from an outdoor experiment with rice cv. Liangyou 108, 86You 8, Nanjing 43, and Yangdao 6. The organ dimensions of rice aboveground were modelled taking corresponding organ biomass as an independent variable. Various variables in rice showed marked consistency in observation and simulation, suggesting possibilities for a general rice architectural model in the young seedling stage. Our descriptive model was suitable for our objective. However, they can set the stage for connection to physiological model via biomass and development of functional structural rice models (FSRM), and start with the localized production and partitioning of assimilates as affected by abiotic growth factors. The finding of biomass-based rice architectural parameter models also can be used in morphological models of blade, sheath, and tiller of the other stages in rice life. 展开更多
关键词 BIOMASS plant architectural parameter model rice (Oryza sativa L.)
下载PDF
Assessment of organic compost and biochar in promoting phytoremediation of crude-oil contaminated soil using Calendula officinalis in the Loess Plateau, China 被引量:4
2
作者 WANG Jincheng JING Mingbo +5 位作者 ZHANG Wei ZHANG Gaosen ZHANG Binglin LIU Guangxiu CHEN Tuo ZHAO Zhiguang 《Journal of Arid Land》 SCIE CSCD 2021年第6期612-628,共17页
The Loess Plateau,located in Gansu Province,is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province.In the last 40 a,ecological environment in this region has b... The Loess Plateau,located in Gansu Province,is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province.In the last 40 a,ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources.Remediation of crude-oil contaminated soil in this area remains to be a challenging task.In this study,in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil(20 g/kg)by Calendula officinalis,we designed five treatments,i.e.,natural attenuation(CK),planted C.officinalis only(P),planted C.officinalis with biochar amendment(PB),planted C.officinalis with organic compost amendment(PC),and planted C.officinalis with co-amendment of biochar and organic compost(PBC).After 152 d of cultivation,total petroleum hydrocarbons(TPH)removal rates of CK,P,PB,PC and PBC were 6.36%,50.08%,39.58%,73.10%and 59.87%,respectively.Shoot and root dry weights of C.officinalis significantly increased by 172.31%and 80.96%under PC and 311.61%and 145.43%under PBC,respectively as compared with P(P<0.05).Total chlorophyll contents in leaves of C.officinalis under P,PC and PBC significantly increased by 77.36%,125.50%and 79.80%,respectively(P<0.05)as compared with PB.Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed.The highest total N,total P,available N,available P and SOM(soil organic matter)occurred in PC,followed by PBC(P<0.05).C.officinalis rhizospheric soil dehydrogenase(DHA)and polyphenol oxidase(PPO)activities in PB were lower than those of other treatments(P<0.05).The values of ACE(abundance-based coverage estimators)and Chao 1 indices for rhizospheric bacteria were the highest under PC followed by PBC,P,PB and CK(P<0.05).However,the Shannon index for bacteria was the highest under PC and PBC,followed by P,PB and CK(P<0.05).In terms of soil microbial community composition,Proteiniphilum,Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC.Relative abundances of Pseudallescheria,Ochroconis,Fusarium,Sarocladium,Podospora,Apodus,Pyrenochaetopsis and Schizothecium under PC and PBC were higher,while relative abundances of Gliomastix,Aspergillus and Alternaria were lower under PC and PBC.As per the nonmetric multidimensional scaling(NMDS)analysis,application of organic compost significantly promoted soil N and P contents,shoot length,root vitality,chlorophyll ratio,total chlorophyll,abundance and diversity of rhizospheric soil microbial community in C.officinalis.A high p H value and lower soil N and P contents induced by biochar,altered C.officinalis rhizospheric soil microbial community composition,which might have restrained its phytoremediation efficiency.The results suggest that organic compost-assisted C.officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau,China. 展开更多
关键词 total petroleum hydrocarbons soil physical-chemical characteristics plant physiological parameters soil enzyme microbial community composition
下载PDF
Effect of Silicon on Growth, Physiology, and Cadmium Translocation of Tobacco (Nicotiana tabacum L.) in Cadmium-Contaminated Soil 被引量:8
3
作者 LU Yingang MA Jun +6 位作者 TENG Ying HE Juny Peter CHRISTIE ZHU Lingjia REN Wenjie ZHANG Manyun Shiping DENG 《Pedosphere》 SCIE CAS CSCD 2018年第4期680-689,共10页
Silicon (Si) offers beneficial effect on plants under cadmium (Cd) stress such as promoting plant growth and increasing resistance to heavy metal toxicity. In this study, a pot experiment was performed to study th... Silicon (Si) offers beneficial effect on plants under cadmium (Cd) stress such as promoting plant growth and increasing resistance to heavy metal toxicity. In this study, a pot experiment was performed to study the role of Si in alleviating Cd toxicity in tobacco (Nicotiana tabacurn L.) plants on a yellow soil taken from Guiyang, China. Nine treatments consisting of three concentrations of Cd (0, 1, and 5 mg kg^-1) together with three Si levels (0, 1, and 4 g kg^-1) were established. Plant growth parameters, Cd concentration, and the malondialdehyde (MDA), chlorophyll, and carotenoid contents were determined 100 d after transplanting of tobacco seedlings. Application of exogenous Si enhanced the growth of tobacco plants under Cd stress. When 5 mg kg^-1 Cd was added, Si addition at 1 and 4 g kg^-1 increased root, stem, and leaf biomass by 26.1%-43.3%, 33.7% 43.8%, and 50.8% 69.9%, respectively, compared to $i addition at 0 g kg^-1. With Si application, the transfer factor of Cd in tobacco from root to shoot under both 1 and 5 mg kg^-1 Cd treatments decreased by 21%. The MDA contents in the Si-treated tobacco plants declined by 5.5% 17.1% compared to those in the non-Si-treated plants, indicating a higher Cd tolerance. Silicon application also increased the chlorophyll and carotenoid contents by 33.9% 41% and 25.8%-47.3% compared to the Cd only treatments. Therefore, it could be concluded that Si application can alleviate Cd toxicity to tobacco by decreasing Cd partitioning in the shoots and MDA levels and by increasing chlorophyll and carotenoid contents, thereby contributing to lowering the potential health risks of Cd contamination. 展开更多
关键词 cadmium stress cadmium tolerance cadmium toxicity CHLOROPHYLL heavy metal plant growth parameter potential health risk transfer factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部