To quantify the relationships between rice plant architecture parameters and the corresponding organ biomass, and to research on functional structural plant models of rice plant, this paper presented a biomass-based m...To quantify the relationships between rice plant architecture parameters and the corresponding organ biomass, and to research on functional structural plant models of rice plant, this paper presented a biomass-based model of aboveground architectural parameters of rice (Oryza sativa L.) in the young seedling stage, designed to explain effects of cultivars and environmental conditions on rice aboveground morphogenesis at the individual leaf level. Various model variables, including biomass of blade and blade length, were parameterized for rice based on data derived from an outdoor experiment with rice cv. Liangyou 108, 86You 8, Nanjing 43, and Yangdao 6. The organ dimensions of rice aboveground were modelled taking corresponding organ biomass as an independent variable. Various variables in rice showed marked consistency in observation and simulation, suggesting possibilities for a general rice architectural model in the young seedling stage. Our descriptive model was suitable for our objective. However, they can set the stage for connection to physiological model via biomass and development of functional structural rice models (FSRM), and start with the localized production and partitioning of assimilates as affected by abiotic growth factors. The finding of biomass-based rice architectural parameter models also can be used in morphological models of blade, sheath, and tiller of the other stages in rice life.展开更多
The Loess Plateau,located in Gansu Province,is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province.In the last 40 a,ecological environment in this region has b...The Loess Plateau,located in Gansu Province,is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province.In the last 40 a,ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources.Remediation of crude-oil contaminated soil in this area remains to be a challenging task.In this study,in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil(20 g/kg)by Calendula officinalis,we designed five treatments,i.e.,natural attenuation(CK),planted C.officinalis only(P),planted C.officinalis with biochar amendment(PB),planted C.officinalis with organic compost amendment(PC),and planted C.officinalis with co-amendment of biochar and organic compost(PBC).After 152 d of cultivation,total petroleum hydrocarbons(TPH)removal rates of CK,P,PB,PC and PBC were 6.36%,50.08%,39.58%,73.10%and 59.87%,respectively.Shoot and root dry weights of C.officinalis significantly increased by 172.31%and 80.96%under PC and 311.61%and 145.43%under PBC,respectively as compared with P(P<0.05).Total chlorophyll contents in leaves of C.officinalis under P,PC and PBC significantly increased by 77.36%,125.50%and 79.80%,respectively(P<0.05)as compared with PB.Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed.The highest total N,total P,available N,available P and SOM(soil organic matter)occurred in PC,followed by PBC(P<0.05).C.officinalis rhizospheric soil dehydrogenase(DHA)and polyphenol oxidase(PPO)activities in PB were lower than those of other treatments(P<0.05).The values of ACE(abundance-based coverage estimators)and Chao 1 indices for rhizospheric bacteria were the highest under PC followed by PBC,P,PB and CK(P<0.05).However,the Shannon index for bacteria was the highest under PC and PBC,followed by P,PB and CK(P<0.05).In terms of soil microbial community composition,Proteiniphilum,Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC.Relative abundances of Pseudallescheria,Ochroconis,Fusarium,Sarocladium,Podospora,Apodus,Pyrenochaetopsis and Schizothecium under PC and PBC were higher,while relative abundances of Gliomastix,Aspergillus and Alternaria were lower under PC and PBC.As per the nonmetric multidimensional scaling(NMDS)analysis,application of organic compost significantly promoted soil N and P contents,shoot length,root vitality,chlorophyll ratio,total chlorophyll,abundance and diversity of rhizospheric soil microbial community in C.officinalis.A high p H value and lower soil N and P contents induced by biochar,altered C.officinalis rhizospheric soil microbial community composition,which might have restrained its phytoremediation efficiency.The results suggest that organic compost-assisted C.officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau,China.展开更多
Silicon (Si) offers beneficial effect on plants under cadmium (Cd) stress such as promoting plant growth and increasing resistance to heavy metal toxicity. In this study, a pot experiment was performed to study th...Silicon (Si) offers beneficial effect on plants under cadmium (Cd) stress such as promoting plant growth and increasing resistance to heavy metal toxicity. In this study, a pot experiment was performed to study the role of Si in alleviating Cd toxicity in tobacco (Nicotiana tabacurn L.) plants on a yellow soil taken from Guiyang, China. Nine treatments consisting of three concentrations of Cd (0, 1, and 5 mg kg^-1) together with three Si levels (0, 1, and 4 g kg^-1) were established. Plant growth parameters, Cd concentration, and the malondialdehyde (MDA), chlorophyll, and carotenoid contents were determined 100 d after transplanting of tobacco seedlings. Application of exogenous Si enhanced the growth of tobacco plants under Cd stress. When 5 mg kg^-1 Cd was added, Si addition at 1 and 4 g kg^-1 increased root, stem, and leaf biomass by 26.1%-43.3%, 33.7% 43.8%, and 50.8% 69.9%, respectively, compared to $i addition at 0 g kg^-1. With Si application, the transfer factor of Cd in tobacco from root to shoot under both 1 and 5 mg kg^-1 Cd treatments decreased by 21%. The MDA contents in the Si-treated tobacco plants declined by 5.5% 17.1% compared to those in the non-Si-treated plants, indicating a higher Cd tolerance. Silicon application also increased the chlorophyll and carotenoid contents by 33.9% 41% and 25.8%-47.3% compared to the Cd only treatments. Therefore, it could be concluded that Si application can alleviate Cd toxicity to tobacco by decreasing Cd partitioning in the shoots and MDA levels and by increasing chlorophyll and carotenoid contents, thereby contributing to lowering the potential health risks of Cd contamination.展开更多
基金supported by the National High-Tech R&D Program of China(2006AA10Z230, 2006AA10Z219-1)the National Natural Science Foundation of China (31171455)+3 种基金the Jiangsu Province Agricultural Scientific Technology Innovation Fund,China (CX(10)221)the Jiangsu Province Postdoctoral Research Program, China (5910907)the No-Profit Industry(Meteorology) Research Program, China (GYHY201006027,GYHY201106027)the Jiangsu Government Scholar-ship for Overseas Studies, Jiangsu Academy of Agricultural Sciences Founding, China (6510733)
文摘To quantify the relationships between rice plant architecture parameters and the corresponding organ biomass, and to research on functional structural plant models of rice plant, this paper presented a biomass-based model of aboveground architectural parameters of rice (Oryza sativa L.) in the young seedling stage, designed to explain effects of cultivars and environmental conditions on rice aboveground morphogenesis at the individual leaf level. Various model variables, including biomass of blade and blade length, were parameterized for rice based on data derived from an outdoor experiment with rice cv. Liangyou 108, 86You 8, Nanjing 43, and Yangdao 6. The organ dimensions of rice aboveground were modelled taking corresponding organ biomass as an independent variable. Various variables in rice showed marked consistency in observation and simulation, suggesting possibilities for a general rice architectural model in the young seedling stage. Our descriptive model was suitable for our objective. However, they can set the stage for connection to physiological model via biomass and development of functional structural rice models (FSRM), and start with the localized production and partitioning of assimilates as affected by abiotic growth factors. The finding of biomass-based rice architectural parameter models also can be used in morphological models of blade, sheath, and tiller of the other stages in rice life.
基金funded by the Scientific Project of Gansu Province,China(20JR5RA548)the National Natural Science Foundation of China(31860148)+1 种基金the Natural Science Foundation of Gansu Province,China(21JR1RM333)the Doctoral Program of Longdong University,China(XYBY1909)。
文摘The Loess Plateau,located in Gansu Province,is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province.In the last 40 a,ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources.Remediation of crude-oil contaminated soil in this area remains to be a challenging task.In this study,in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil(20 g/kg)by Calendula officinalis,we designed five treatments,i.e.,natural attenuation(CK),planted C.officinalis only(P),planted C.officinalis with biochar amendment(PB),planted C.officinalis with organic compost amendment(PC),and planted C.officinalis with co-amendment of biochar and organic compost(PBC).After 152 d of cultivation,total petroleum hydrocarbons(TPH)removal rates of CK,P,PB,PC and PBC were 6.36%,50.08%,39.58%,73.10%and 59.87%,respectively.Shoot and root dry weights of C.officinalis significantly increased by 172.31%and 80.96%under PC and 311.61%and 145.43%under PBC,respectively as compared with P(P<0.05).Total chlorophyll contents in leaves of C.officinalis under P,PC and PBC significantly increased by 77.36%,125.50%and 79.80%,respectively(P<0.05)as compared with PB.Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed.The highest total N,total P,available N,available P and SOM(soil organic matter)occurred in PC,followed by PBC(P<0.05).C.officinalis rhizospheric soil dehydrogenase(DHA)and polyphenol oxidase(PPO)activities in PB were lower than those of other treatments(P<0.05).The values of ACE(abundance-based coverage estimators)and Chao 1 indices for rhizospheric bacteria were the highest under PC followed by PBC,P,PB and CK(P<0.05).However,the Shannon index for bacteria was the highest under PC and PBC,followed by P,PB and CK(P<0.05).In terms of soil microbial community composition,Proteiniphilum,Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC.Relative abundances of Pseudallescheria,Ochroconis,Fusarium,Sarocladium,Podospora,Apodus,Pyrenochaetopsis and Schizothecium under PC and PBC were higher,while relative abundances of Gliomastix,Aspergillus and Alternaria were lower under PC and PBC.As per the nonmetric multidimensional scaling(NMDS)analysis,application of organic compost significantly promoted soil N and P contents,shoot length,root vitality,chlorophyll ratio,total chlorophyll,abundance and diversity of rhizospheric soil microbial community in C.officinalis.A high p H value and lower soil N and P contents induced by biochar,altered C.officinalis rhizospheric soil microbial community composition,which might have restrained its phytoremediation efficiency.The results suggest that organic compost-assisted C.officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau,China.
基金the Enterprises and Institutions Entrusted Projects of Guizhou Province, China (No. 700377111206)the National Natural Science Foundation of China (No. 31760133)
文摘Silicon (Si) offers beneficial effect on plants under cadmium (Cd) stress such as promoting plant growth and increasing resistance to heavy metal toxicity. In this study, a pot experiment was performed to study the role of Si in alleviating Cd toxicity in tobacco (Nicotiana tabacurn L.) plants on a yellow soil taken from Guiyang, China. Nine treatments consisting of three concentrations of Cd (0, 1, and 5 mg kg^-1) together with three Si levels (0, 1, and 4 g kg^-1) were established. Plant growth parameters, Cd concentration, and the malondialdehyde (MDA), chlorophyll, and carotenoid contents were determined 100 d after transplanting of tobacco seedlings. Application of exogenous Si enhanced the growth of tobacco plants under Cd stress. When 5 mg kg^-1 Cd was added, Si addition at 1 and 4 g kg^-1 increased root, stem, and leaf biomass by 26.1%-43.3%, 33.7% 43.8%, and 50.8% 69.9%, respectively, compared to $i addition at 0 g kg^-1. With Si application, the transfer factor of Cd in tobacco from root to shoot under both 1 and 5 mg kg^-1 Cd treatments decreased by 21%. The MDA contents in the Si-treated tobacco plants declined by 5.5% 17.1% compared to those in the non-Si-treated plants, indicating a higher Cd tolerance. Silicon application also increased the chlorophyll and carotenoid contents by 33.9% 41% and 25.8%-47.3% compared to the Cd only treatments. Therefore, it could be concluded that Si application can alleviate Cd toxicity to tobacco by decreasing Cd partitioning in the shoots and MDA levels and by increasing chlorophyll and carotenoid contents, thereby contributing to lowering the potential health risks of Cd contamination.