The paper described the coking plant and Lurgi gasifier plant waste water types and characteristics , comparing the COD and ammonia-N level in different source of waste water in the plant.The currently maturity coking...The paper described the coking plant and Lurgi gasifier plant waste water types and characteristics , comparing the COD and ammonia-N level in different source of waste water in the plant.The currently maturity coking plant waste water treatment method was statement in the paper and analyzed the pros and cons of each method.The primary cost analysis of each type of waste water treatment was also completed in the paper.According to these analyses , recommendation was prepared for coking plant and Lurgi gasifier plant waste water treatment.展开更多
Small WWTP (wastewater treatment plants) are frequently located, by necessity, in remote and isolated sites, which increases the difficulty of its energy supply. This paper describes a case study which is a step by ...Small WWTP (wastewater treatment plants) are frequently located, by necessity, in remote and isolated sites, which increases the difficulty of its energy supply. This paper describes a case study which is a step by step procedure concerning the evaluation of the wind potential of sites that are dependent of in-situ energy generation, as well as, on the utilization of the potential wind energy in Magoito WWTP. The adopted methodology comprised the collection of one year of in-situ wind data and its validation by comparison with historical data of more than 10 years of a nearby anemometric station. The data provided by the two anemometric stations was statistically treated and allowed the analysis of the results from the two stations. These results are promising in terms of wind availability and velocity. Finally, the study comprised the simulation of the local wind conditions for a considerable larger area in order to find the best site for locating a wind turbine.展开更多
Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biolo...Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biological waste water treatment plant (WWTP) processing a COD concentration of 43000 mg·L^-1 wastewater from an oxochemical manufacturing plant. Stage improvements of the plant process by dilution of the inhibitory influent using other chemical wastewater streams resulting in a synergistic process effect, and removal of inhibitory organics by phase separation via acidification, effectively achieved process optimization producing a high quality effluent. In particular, the COD removal efficiency of granular sludge based anaerobic reactors increased from 56% to 90%. The final effluent COD decreased from 250mg·L^-1 to 50mg·L^-1, consistently meeting the COD concentration of 100 mg·L^-1 regulatory discharge limit. The success of the process enhancements supports the hypothesis that long-chain quaternary carboxylic acids act as substrate inhibitors in the biological process.展开更多
In this study, pyrolusiteore (MnO2) was subjected to mechanical milling with a high-energy mill with carbonized tea plant wastes and the effect of grinding time on the crystal structure of the material was investiga...In this study, pyrolusiteore (MnO2) was subjected to mechanical milling with a high-energy mill with carbonized tea plant wastes and the effect of grinding time on the crystal structure of the material was investigated. The ratio of Mn/Fe was 8/1, the ratio of C/(MnO2 + Fe3O4) was 2 and the ratio of ball to ore was 10/1. The samples were mechanically ground at 10, 15, 20, 30, 60, 90 and 120 hours. In the processes performed on the attritor, the rotation speed of the mill shaft was determined to be 350 rpm. The results were characterized by TG-DTA, SEM and XRD analyzes. As a result of the experimental studies, it was observed that the samples subjected to mechanical grinding for 120 hours were gradually reduced due to the increasing grinding time at all the diffraction peaks when the XRD peaks were compared with the grinding times. In the thermogravimetric analysis, the sample milled for 120 hours, 50% weight loss was observed at 470 ℃, weight loss of up to 56% was observed at progressive temperatures.展开更多
In recent years,relevant government departments have achieved the goal of reduction and harmless application through the development and implementation of municipal waste incineration power plants,in order to advocate...In recent years,relevant government departments have achieved the goal of reduction and harmless application through the development and implementation of municipal waste incineration power plants,in order to advocate ecological and environmental protection.At present,in order to further achieve the goal of sustainable development,municipal waste incineration power plants have actively responded to the national call and requirements as well as made overall arrangements for the energy-saving design and optimization design of their internal system.Therefore,with the concept of sustainable development,this paper studies and analyzes the problems of the HVAC design as well as suggests related strategies for municipal waste incineration power plants in order to provide relevant reference.展开更多
The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by bind...The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.展开更多
In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus ...In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .展开更多
Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions...Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m^3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m^3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air.展开更多
Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critica...Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants(WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples(up to 9478 mg/L), followed by endogenous residues(6736 mg/L),extracellular polymeric substances(2088 mg/L), and intracellular storage products(464 mg/L)among others. Moreover, significant differences(p 〈 0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.展开更多
A new complex plant for carbonization and composting of municipal wastes proposed for Gero City is introduced. The separated combustible waste and non-separated combustible waste are carbonized in two fluidized carbon...A new complex plant for carbonization and composting of municipal wastes proposed for Gero City is introduced. The separated combustible waste and non-separated combustible waste are carbonized in two fluidized carbonization furnaces in the plant, and the coke produced is used in steelworks. The separated garbage and forest-wastes are mixed with dried septic-tank sludge to produce high quality compost for farms. This use of waste materials in the complex plant considerably lowers the amount of waste going to land-fills, and in addition, creates lower total emission of dioxins and carbon dioxide into the environment.展开更多
For sustainable plant drinks production,the biorefinery concept of obtained press cakes(PC)using ultrasonication,mechanical separation,and ultra-filtration was designed in Fraunhofer UMSICHT(Germany).In this study obt...For sustainable plant drinks production,the biorefinery concept of obtained press cakes(PC)using ultrasonication,mechanical separation,and ultra-filtration was designed in Fraunhofer UMSICHT(Germany).In this study obtained permeates,as wastes after ultrafiltration of PC(soyabeans,almonds,coconut,oats,and rice)were analyzed and their bio-stimulatory effect on the growth of wheatgrass in vivo was investigated.Permeates with higher soluble protein content(soy,almonds,and coconut)resulted in a significant increase in germination parameters(germination percentage(GP),length of stem and root as well as biomass of stem and root increased on averge by 8.3%,15.8%,9.2%,2.22 times and 1.8 times,respectively)compared to the control treatment.Additionally,the fermentation using antimicrobial lactic acid bacteria(LAB)strains(Lactobacillus brevis LUHS173,Pediococcus acidilactici LUHS236 and Lactobacillus farraginis LUHS206)was applied for bio-treatment of permeates.The efficiency of fermentation process was evaluated on the changes of pH,TTA,LAB growth kinetics and lactic acid and its isomers production.Furthermore,the antifungal activity of selected fermented products against fungi(Fusarium graminearum F,F.graminearum,and F.culmorum)was determined.It was found that the highest antifungal activity(18.0 mm and 16.5 mm,respectively)was obtained by 48 h fermentation of permeates from grain press cake(oats and rice),containing the most reducing saccharides,and they significantly improved the germination of contaminated grains.Innovations in the sustainable production of plant-origin drinks enable to implementation of new,environmentally friendly technologies in food sector.展开更多
文摘The paper described the coking plant and Lurgi gasifier plant waste water types and characteristics , comparing the COD and ammonia-N level in different source of waste water in the plant.The currently maturity coking plant waste water treatment method was statement in the paper and analyzed the pros and cons of each method.The primary cost analysis of each type of waste water treatment was also completed in the paper.According to these analyses , recommendation was prepared for coking plant and Lurgi gasifier plant waste water treatment.
文摘Small WWTP (wastewater treatment plants) are frequently located, by necessity, in remote and isolated sites, which increases the difficulty of its energy supply. This paper describes a case study which is a step by step procedure concerning the evaluation of the wind potential of sites that are dependent of in-situ energy generation, as well as, on the utilization of the potential wind energy in Magoito WWTP. The adopted methodology comprised the collection of one year of in-situ wind data and its validation by comparison with historical data of more than 10 years of a nearby anemometric station. The data provided by the two anemometric stations was statistically treated and allowed the analysis of the results from the two stations. These results are promising in terms of wind availability and velocity. Finally, the study comprised the simulation of the local wind conditions for a considerable larger area in order to find the best site for locating a wind turbine.
文摘Wastewaters from the chemical industry are usually of high-strength and may contain minor inhibitory and recalcitrant organics that are at times not readily identifiable. This paper describes the experience of a biological waste water treatment plant (WWTP) processing a COD concentration of 43000 mg·L^-1 wastewater from an oxochemical manufacturing plant. Stage improvements of the plant process by dilution of the inhibitory influent using other chemical wastewater streams resulting in a synergistic process effect, and removal of inhibitory organics by phase separation via acidification, effectively achieved process optimization producing a high quality effluent. In particular, the COD removal efficiency of granular sludge based anaerobic reactors increased from 56% to 90%. The final effluent COD decreased from 250mg·L^-1 to 50mg·L^-1, consistently meeting the COD concentration of 100 mg·L^-1 regulatory discharge limit. The success of the process enhancements supports the hypothesis that long-chain quaternary carboxylic acids act as substrate inhibitors in the biological process.
文摘In this study, pyrolusiteore (MnO2) was subjected to mechanical milling with a high-energy mill with carbonized tea plant wastes and the effect of grinding time on the crystal structure of the material was investigated. The ratio of Mn/Fe was 8/1, the ratio of C/(MnO2 + Fe3O4) was 2 and the ratio of ball to ore was 10/1. The samples were mechanically ground at 10, 15, 20, 30, 60, 90 and 120 hours. In the processes performed on the attritor, the rotation speed of the mill shaft was determined to be 350 rpm. The results were characterized by TG-DTA, SEM and XRD analyzes. As a result of the experimental studies, it was observed that the samples subjected to mechanical grinding for 120 hours were gradually reduced due to the increasing grinding time at all the diffraction peaks when the XRD peaks were compared with the grinding times. In the thermogravimetric analysis, the sample milled for 120 hours, 50% weight loss was observed at 470 ℃, weight loss of up to 56% was observed at progressive temperatures.
文摘In recent years,relevant government departments have achieved the goal of reduction and harmless application through the development and implementation of municipal waste incineration power plants,in order to advocate ecological and environmental protection.At present,in order to further achieve the goal of sustainable development,municipal waste incineration power plants have actively responded to the national call and requirements as well as made overall arrangements for the energy-saving design and optimization design of their internal system.Therefore,with the concept of sustainable development,this paper studies and analyzes the problems of the HVAC design as well as suggests related strategies for municipal waste incineration power plants in order to provide relevant reference.
文摘The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.
文摘In Wuxi Wastewater Treatment Plant, the Anaerobic, anoxic and oxic (A2/O) process was employed to remove the nitrogen and phosphorus, which exhibited the positive results of the high removal efficiency for phosphorus with a range of 67.7% to 89.9% and an average value of 78.0. The effluent of phosphorus met the national discharge standard. The removal of TN was effected by both BOD variation of influent and wastewater temperature. TN removal was in the range of 28.5% to 55.8% with an average value of 39.4%. The energy cost was 0.15 kWh(m3d)-1 or 1.35 kWh(kgBOD@d)-1. The annual average sludge production was 46.3 m3d-1, the annual average dosage for the dewatering was 40 kg d-1 .
基金supported by the Environmental Protection Public Welfare Project (No. 201109035)
文摘Food waste treatment plants (FWTPs) are usually associated with odorous nuisance and health risks, which are partially caused by volatile organic compound (VOC) emissions. This study investigated the VOC emissions from a selected full-scale FWTP in China. The feedstock used in this plant was mainly collected from local restaurants. For a year, the FWTP was closely monitored on specific days in each season. Four major indoor treatment units of the plant, including the storage room, sorting/crushing room, hydrothermal hydrolysis unit, and aerobic fermentation unit, were chosen as the monitoring locations. The highest mean concentration of total VOC emissions was observed in the aerobic fermentation unit at 21,748.2-31,283.3 μg/m^3, followed by the hydrothermal hydrolysis unit at 10,798.1-23,144.4 μg/m^3. The detected VOC families included biogenic compounds (oxygenated compounds, hydrocarbons, terpenes, and organosulfur compounds) and abiogenic compounds (aromatic hydrocarbons and halocarbons). Oxygenated compounds, particularly alcohols, were the most abundant compounds in all samples. With the use of odor index analysis and principal components analysis, the hydrothermal hydrolysis and aerobic fermentation units were clearly distinguished from the pre-treatment units, as characterized by their higher contributions to odorous nuisance. Methanthiol was the dominant odorant in the hydrothermal hydrolysis unit, whereas aldehyde was the dominant odorant in the aerobic fermentation unit. Terpenes, specifically limonene, had the highest level of propylene equivalent concentration during the monitoring periods. This concentration can contribute to the increase in the atmospheric reactivity and ozone formation potential in the surrounding air.
基金supported by the National Natural Science Foundation of China(Nos.51408589 and 51138009)State Key Joint Laboratory of Environment Simulation and Pollution Control of China(Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,No.14Z03ESPCR)Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants(WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples(up to 9478 mg/L), followed by endogenous residues(6736 mg/L),extracellular polymeric substances(2088 mg/L), and intracellular storage products(464 mg/L)among others. Moreover, significant differences(p 〈 0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.
文摘A new complex plant for carbonization and composting of municipal wastes proposed for Gero City is introduced. The separated combustible waste and non-separated combustible waste are carbonized in two fluidized carbonization furnaces in the plant, and the coke produced is used in steelworks. The separated garbage and forest-wastes are mixed with dried septic-tank sludge to produce high quality compost for farms. This use of waste materials in the complex plant considerably lowers the amount of waste going to land-fills, and in addition, creates lower total emission of dioxins and carbon dioxide into the environment.
基金This research was supported in part by the ERA-NET project DISCOVERY:“Disaggregation of conventional vegetable press cakes by novel techniques to receive new products and to increase the yield”.Project code SUSFOOD2-ID:101.This work is also based upon the work from COST Action 18101 SOURDOMICS-Sourdough biotechnology network towards novel,healthier and sustainable food and bioprocesses(http s://sourdomics.com/https://www.cost.eu/actions/CA18101/),where the author J.M.F.R.is the Chair and Grant Holder Scientific Representative,the author E.B.is vice-chair and leader of the working group 6“Project design and development innovative prototypes of products and small-scale processing technologies”,the author G.J.is leader of the working group 3“Design and development sourdough starter cultures for breadmaking and other agri-food products”and the author F.¨O.is the leader of the working group 8“Food safety,health promoting,sensorial perception and consumers’behaviour”,and is supported by COST(European Cooperation in Science and Technology)(https://www.cost.eu/).COST is a funding agency for research and innovation networks.Regarding the author J.M.F.R.,this work was also financially supported by:(i)Base Funding-UIDB/00511/2020 of the Laboratory for Process Engineering,Environment,Biotechnology and Energy-LEPABE-funded by national funds through the FCT/MCTES(PIDDAC)(ii)Project PTDC/EQU-EQU/28101/2017-SAFEGOAL-Safer Synthetic Turf Pitches with Infill of Rubber Crumb from Recycled Tires,funded by FEDER funds through COMPETE2020-Programa Operacional Competitividade e Internacionalizaç˜ao(POCI)and by national funds(PIDDAC)through FCT/MCTES.
文摘For sustainable plant drinks production,the biorefinery concept of obtained press cakes(PC)using ultrasonication,mechanical separation,and ultra-filtration was designed in Fraunhofer UMSICHT(Germany).In this study obtained permeates,as wastes after ultrafiltration of PC(soyabeans,almonds,coconut,oats,and rice)were analyzed and their bio-stimulatory effect on the growth of wheatgrass in vivo was investigated.Permeates with higher soluble protein content(soy,almonds,and coconut)resulted in a significant increase in germination parameters(germination percentage(GP),length of stem and root as well as biomass of stem and root increased on averge by 8.3%,15.8%,9.2%,2.22 times and 1.8 times,respectively)compared to the control treatment.Additionally,the fermentation using antimicrobial lactic acid bacteria(LAB)strains(Lactobacillus brevis LUHS173,Pediococcus acidilactici LUHS236 and Lactobacillus farraginis LUHS206)was applied for bio-treatment of permeates.The efficiency of fermentation process was evaluated on the changes of pH,TTA,LAB growth kinetics and lactic acid and its isomers production.Furthermore,the antifungal activity of selected fermented products against fungi(Fusarium graminearum F,F.graminearum,and F.culmorum)was determined.It was found that the highest antifungal activity(18.0 mm and 16.5 mm,respectively)was obtained by 48 h fermentation of permeates from grain press cake(oats and rice),containing the most reducing saccharides,and they significantly improved the germination of contaminated grains.Innovations in the sustainable production of plant-origin drinks enable to implementation of new,environmentally friendly technologies in food sector.