Due to global climate change, temperature stress has become one of the primary causes of crop losses worldwide. Much progress has been made in unraveling the complex stress response mechanisms in plants, particularly ...Due to global climate change, temperature stress has become one of the primary causes of crop losses worldwide. Much progress has been made in unraveling the complex stress response mechanisms in plants, particularly in the identification of temperature stress responsive protein-coding genes. Recently discovered micro RNAs(mi RNAs) and endogenous small-interfering RNAs(si RNAs) have also been demonstrated as simportant players in plant temperature stress response.Using high-throughput sequencing, many small RNAs,especially mi RNAs, have been identified to be triggered by cold or heat. Subsequently, several studies have shown an important functional role for these small RNAs in cold or heat tolerance. These findings greatly broaden our understanding of endogenous small RNAs in plant stress response control. Here, we highlight new findings regarding the roles of mi RNAs and si RNAs in plant temperature stress response and acclimation. We also review the current understanding of the regulatory mechanisms of small RNAs in temperature stress response, and explore the outlook for the use of these small RNAs in molecular breeding for improvement of temperature stress tolerance in plants.展开更多
基金supported by the National Youth Science Foundation of China(31201198)the Key Project of Guangdong Scientific and Technological Plan(2015B020231002)the Guangdong Modern Agricultural Creation Team Project(2016LM2148)
文摘Due to global climate change, temperature stress has become one of the primary causes of crop losses worldwide. Much progress has been made in unraveling the complex stress response mechanisms in plants, particularly in the identification of temperature stress responsive protein-coding genes. Recently discovered micro RNAs(mi RNAs) and endogenous small-interfering RNAs(si RNAs) have also been demonstrated as simportant players in plant temperature stress response.Using high-throughput sequencing, many small RNAs,especially mi RNAs, have been identified to be triggered by cold or heat. Subsequently, several studies have shown an important functional role for these small RNAs in cold or heat tolerance. These findings greatly broaden our understanding of endogenous small RNAs in plant stress response control. Here, we highlight new findings regarding the roles of mi RNAs and si RNAs in plant temperature stress response and acclimation. We also review the current understanding of the regulatory mechanisms of small RNAs in temperature stress response, and explore the outlook for the use of these small RNAs in molecular breeding for improvement of temperature stress tolerance in plants.