The biochemical composition of atherosclerotic plaques is closely related to plaque stability and, therefore, to the associated risk of plaque evolution and rupture. Combinations of current imaging modalities, such as...The biochemical composition of atherosclerotic plaques is closely related to plaque stability and, therefore, to the associated risk of plaque evolution and rupture. Combinations of current imaging modalities, such as optical coherence tomography(OCT) with spectroscopic methods, therefore offer the possibility of concurrently obtaining morphological as well as chemical information. Raman spectroscopy is one of the most promising techniques that can be combined with intravascular imaging modalities. A microscopy setup merging both techniques has been applied to characterize plaque depositions of a human aorta affected by the disease. Calcified depositions were clearly identified and subsequently confirmed by histopathology.展开更多
The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer...The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer has the potential to treat Alzheimer’s disease.In this study,we intramuscularly injected the p(Aβ3-10)10-MT vaccine into the left hindlimb of APP/PS1/tau triple-transgenic mice,which are a model for Alzheimer’s disease.Our results showed that the p(Aβ3-10)10-MT vaccine effectively reduced Aβoligomer levels and plaque deposition in the cerebral cortex and hippocampus,decreased the levels tau protein variants,reduced synaptic loss,protected synaptic function,reduced neuron loss,and ameliorated memory impairment without causing any cerebral hemorrhaging.Therefore,this novel DNA vaccine,which is safe and highly effective in mouse models of Alzheimer’s disease,holds a lot of promise for the treatment of Alzheimer’s disease in humans.展开更多
文摘The biochemical composition of atherosclerotic plaques is closely related to plaque stability and, therefore, to the associated risk of plaque evolution and rupture. Combinations of current imaging modalities, such as optical coherence tomography(OCT) with spectroscopic methods, therefore offer the possibility of concurrently obtaining morphological as well as chemical information. Raman spectroscopy is one of the most promising techniques that can be combined with intravascular imaging modalities. A microscopy setup merging both techniques has been applied to characterize plaque depositions of a human aorta affected by the disease. Calcified depositions were clearly identified and subsequently confirmed by histopathology.
基金supported by the National Nature Science Foundation of China,No.81870819(to YPC)the Natural Science Foundation of Liaoning Province of China,No.2019-MS-200(to XNX).
文摘The amyloid-β(Aβ)oligomer,rather than the Aβmonomer,is considered to be the primary initiator of Alzheimer’s disease.It was hypothesized that p(Aβ3-10)10-MT,the recombinant Aβ3-10 gene vaccine of the Aβoligomer has the potential to treat Alzheimer’s disease.In this study,we intramuscularly injected the p(Aβ3-10)10-MT vaccine into the left hindlimb of APP/PS1/tau triple-transgenic mice,which are a model for Alzheimer’s disease.Our results showed that the p(Aβ3-10)10-MT vaccine effectively reduced Aβoligomer levels and plaque deposition in the cerebral cortex and hippocampus,decreased the levels tau protein variants,reduced synaptic loss,protected synaptic function,reduced neuron loss,and ameliorated memory impairment without causing any cerebral hemorrhaging.Therefore,this novel DNA vaccine,which is safe and highly effective in mouse models of Alzheimer’s disease,holds a lot of promise for the treatment of Alzheimer’s disease in humans.