This paper describes a Mach/Langmuir probe array with five pins and six pins, which can measure not only parallel flows and the flow perpendicular to the magnetic field but also the radial and the poloidal electric fi...This paper describes a Mach/Langmuir probe array with five pins and six pins, which can measure not only parallel flows and the flow perpendicular to the magnetic field but also the radial and the poloidal electric field E. arid E as well. Experimental measurements of the edge fluctuations, velocities of the toroidal, the poloidal flow and electric field have been carried out on both of SOL and the boundary region of HL-1M for Ohmic, biased H-mode, Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam Injection (MBI), Multi-shot Pellet Injection (MPI), Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH) and Electric Cyclotron Resonance Heating (ECRH) discharges. The results show that the suppressions of the fluctuations are related to poloidal rotations produced by different discharge modes in the improved particle confinement property, simultaneously the change of the radial and poloidal electric field is generated and becomes more negative at the Tokamak plasma edge, and the sheared poloidal flow is related to the reduction in fluctuation level, and the poloidal velocity is mainly dominated by the E × B drift.展开更多
Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adeq...Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.展开更多
Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray compute...Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography(CT)and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.展开更多
文摘This paper describes a Mach/Langmuir probe array with five pins and six pins, which can measure not only parallel flows and the flow perpendicular to the magnetic field but also the radial and the poloidal electric field E. arid E as well. Experimental measurements of the edge fluctuations, velocities of the toroidal, the poloidal flow and electric field have been carried out on both of SOL and the boundary region of HL-1M for Ohmic, biased H-mode, Lower Hybrid Current Drive (LHCD), Supersonic Molecular Beam Injection (MBI), Multi-shot Pellet Injection (MPI), Neutral Beam Injection (NBI), Ion Cyclotron Resonance Heating (ICRH) and Electric Cyclotron Resonance Heating (ECRH) discharges. The results show that the suppressions of the fluctuations are related to poloidal rotations produced by different discharge modes in the improved particle confinement property, simultaneously the change of the radial and poloidal electric field is generated and becomes more negative at the Tokamak plasma edge, and the sheared poloidal flow is related to the reduction in fluctuation level, and the poloidal velocity is mainly dominated by the E × B drift.
基金supported by National Natural Science Foundation of China(Nos.11505040,11261140326,11405038 and 51577043)China Postdoctoral Science Foundation(Nos.2016M591518,2015M570283)HIT.NSRIF under Grant No.2017008
文摘Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.
文摘Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography(CT)and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.