Plasma absorption probe (PAP) was developed for measuring the electron density in plasmas processing based on the surface-wave characteristics. In order to diagnose the plasma with lower density and higher pressure,...Plasma absorption probe (PAP) was developed for measuring the electron density in plasmas processing based on the surface-wave characteristics. In order to diagnose the plasma with lower density and higher pressure, a sensitive PAP was also developed. Both types of PAP were analyzed theoretically under the quasi-static approximation, which is highly problematic when a conductor exists in the resonance region of the probe. For this reason, a theoretical model for the PAP is presented in this paper. The model is derived from the electromagnetic wave equation. Its principle is then verified via experiments and numerical simulations. Both experimental and numerical results show that the electromagnetic theoretical model is valid as compared with the quasi-static model. Consequently, a new type of PAP, named as the electromagnetic PAP, is thus proposed for the measurement of electron density.展开更多
In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived.It is found that the temp...In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived.It is found that the temperature effect(electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect(dimensionless Debye shielding parameter k) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of k when τ?>?3.5. However, the system will be unstable when τ?=?1 and k> 4.1.展开更多
A finite difference time domain (FDTD) method is used to numerically study the power absorption of broadband terahertz (0.1 - 1.5 THz) electromagnetic waves in a partially ionized uniform plasma layer under low pr...A finite difference time domain (FDTD) method is used to numerically study the power absorption of broadband terahertz (0.1 - 1.5 THz) electromagnetic waves in a partially ionized uniform plasma layer under low pressure and atmosphere discharge conditions. The power absorption spectra are calculated numerically and the numerical results are in accordance with the analytic results. Meanwhile, the effects on the power absorption are calculated with different applied magnetic fields, collision frequencies and electron number densities, which depend strongly on those parameters. Under the dense strongly magnetized plasma conditions, the absorption gaps appear in the range of 0.3 - 0.36 THz, and are enlarged with the increasing electron number density.展开更多
A refined derivation of refraction and absorption of the pure O-mode and X-mode Electron Cyclotron Resonance (ECR) wave in tokamak plasma is carried out. The weakly- relativistic dielectric tensor elements are used an...A refined derivation of refraction and absorption of the pure O-mode and X-mode Electron Cyclotron Resonance (ECR) wave in tokamak plasma is carried out. The weakly- relativistic dielectric tensor elements are used and the results show that the refraction only changes a little, compared to that deduced from the cold-plasma dispersion relation even in the inner re- gion. Refined formulae of the wave damping rate are then obtained for both the O-mode and the X-mode fundamental waves.展开更多
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 MHz. The simulations were carried out by means of a code,HELIC. They were carried ...This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 MHz. The simulations were carried out by means of a code,HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from 10^(11) cm^(-3) to 10^(13) cm^(-3). The magnetic field was 200, 400, 600 and 1000 G. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece–Gould(TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile.Power deposition was considerably asymmetric when the n/B_0 ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately n_0 =10^(11) cm^(-3), irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was 10^(12) cm^(-3). The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.展开更多
In this paper,an absorption spectroscopy measurement method was applied on two atmospheric pressure plasma sources to determine their production of nitric oxide.The concentrations are essential for evaluating the plas...In this paper,an absorption spectroscopy measurement method was applied on two atmospheric pressure plasma sources to determine their production of nitric oxide.The concentrations are essential for evaluating the plasma sources based on the principle of the Dielectric Barrier Discharge(DBD)for applications in plasma medicine.The described method is based on a setup with an electrodeless discharge lamp filled with a mixture of oxygen and nitrogen.One of the emitted wavelengths is an important resonance wavelength of nitric oxide(λ = 226.2 nm).By comparing the absorption behaviour at the minimum and maximum of the spectral absorption cross section of nitric oxide around that wavelength,and measuring the change in intensity by the absorbing plasma,the concentration of nitric oxide inside the plasma can be calculated.The produced nitric oxide concentrations depend on the pulse duration and are in the range of 180 ppm to 1400 ppm,so that a distance of about 10 cm to the respiratory tract is enough to conform to the VDI Guideline 2310.展开更多
基金supported by National Natural Science Foundation of China (Nos.10675121, 10705028 and 10605025)National Basic Research Program of China (No.2008CB717800)
文摘Plasma absorption probe (PAP) was developed for measuring the electron density in plasmas processing based on the surface-wave characteristics. In order to diagnose the plasma with lower density and higher pressure, a sensitive PAP was also developed. Both types of PAP were analyzed theoretically under the quasi-static approximation, which is highly problematic when a conductor exists in the resonance region of the probe. For this reason, a theoretical model for the PAP is presented in this paper. The model is derived from the electromagnetic wave equation. Its principle is then verified via experiments and numerical simulations. Both experimental and numerical results show that the electromagnetic theoretical model is valid as compared with the quasi-static model. Consequently, a new type of PAP, named as the electromagnetic PAP, is thus proposed for the measurement of electron density.
基金supported by National Natural Science Foundation of China (Nos. 11247016, 11763006 and 11705080)the International S&T Cooperation Program of China (No. 2015DFA61800)+1 种基金the Natural Science Foundation of JiangXi Province (Nos. 2014ZBAB202001, 20151BAB212010, 20151BAB202023 and 2015ZBAB202006)the Natural Science Foundation of JiangXi University of Technology (No. ZR15YB09)
文摘In the present paper, the effect of plasma absorption on lattice waves in 2D hexagonal dust crystals is investigated. The dispersion relations with the effect of plasma absorption are derived.It is found that the temperature effect(electron-to-ion temperature ratio τ) enhances the frequency of the dust lattice waves, while the spatial effect(dimensionless Debye shielding parameter k) weakens the frequency of the dust lattice waves. In addition, the system stabilities under the conditions of plasma absorption are studied. It is found that the temperature effect narrows the range of instability, while the spatial effect extends this range. And the range of instability is calculated, i.e. the system will always in the stable state regardless of the value of k when τ?>?3.5. However, the system will be unstable when τ?=?1 and k> 4.1.
基金supported by National Natural Science Foundation of China (Nos.10675029, 11075030)National Basic Research Program of China (Nos.2008CB717801, 2008CB787103, 2009GB105004,2010GB106002)Fundamental Research Funds for the Central Universities of China
文摘A finite difference time domain (FDTD) method is used to numerically study the power absorption of broadband terahertz (0.1 - 1.5 THz) electromagnetic waves in a partially ionized uniform plasma layer under low pressure and atmosphere discharge conditions. The power absorption spectra are calculated numerically and the numerical results are in accordance with the analytic results. Meanwhile, the effects on the power absorption are calculated with different applied magnetic fields, collision frequencies and electron number densities, which depend strongly on those parameters. Under the dense strongly magnetized plasma conditions, the absorption gaps appear in the range of 0.3 - 0.36 THz, and are enlarged with the increasing electron number density.
基金This work is supported by the China Nutional Nature Science Foundation No.19975015
文摘A refined derivation of refraction and absorption of the pure O-mode and X-mode Electron Cyclotron Resonance (ECR) wave in tokamak plasma is carried out. The weakly- relativistic dielectric tensor elements are used and the results show that the refraction only changes a little, compared to that deduced from the cold-plasma dispersion relation even in the inner re- gion. Refined formulae of the wave damping rate are then obtained for both the O-mode and the X-mode fundamental waves.
文摘This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 MHz. The simulations were carried out by means of a code,HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from 10^(11) cm^(-3) to 10^(13) cm^(-3). The magnetic field was 200, 400, 600 and 1000 G. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece–Gould(TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile.Power deposition was considerably asymmetric when the n/B_0 ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately n_0 =10^(11) cm^(-3), irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was 10^(12) cm^(-3). The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.
文摘In this paper,an absorption spectroscopy measurement method was applied on two atmospheric pressure plasma sources to determine their production of nitric oxide.The concentrations are essential for evaluating the plasma sources based on the principle of the Dielectric Barrier Discharge(DBD)for applications in plasma medicine.The described method is based on a setup with an electrodeless discharge lamp filled with a mixture of oxygen and nitrogen.One of the emitted wavelengths is an important resonance wavelength of nitric oxide(λ = 226.2 nm).By comparing the absorption behaviour at the minimum and maximum of the spectral absorption cross section of nitric oxide around that wavelength,and measuring the change in intensity by the absorbing plasma,the concentration of nitric oxide inside the plasma can be calculated.The produced nitric oxide concentrations depend on the pulse duration and are in the range of 180 ppm to 1400 ppm,so that a distance of about 10 cm to the respiratory tract is enough to conform to the VDI Guideline 2310.