KTX(Keda Torus for eXperiment)is a new reversed field pinch device.The KTX plasma control system(PCS)can provide real-time,stable,flexible plasma control which is designed by ASIPP(Institute of Plasma Physics,Chi...KTX(Keda Torus for eXperiment)is a new reversed field pinch device.The KTX plasma control system(PCS)can provide real-time,stable,flexible plasma control which is designed by ASIPP(Institute of Plasma Physics,Chinese Academy of Sciences),based on the Linux cluster system and EPICS(Experimental Physics and Industrial Control System)framework,and developed from DIII-D(Doublet III-D)PCS.The control of the equilibrium field in KTX uses a PID(Proportional-Integral-Derivative)feedback controller.The control of the gas injection is an open loop control.The plasma control simulation system is one part of the plasma control system,which is used to test the plasma control algorithm if it is revised and updated.The KTX PCS has been successfully tested using HT-7(Hefei Torus 7)experiment data in simulation mode.In the next phase,an error field feedback control and KTX simulator will be added to the KTX PCS,and the KTX PCS will be applied in experiments in the future.展开更多
Plasma control system(PCS),mainly developed for real-time feedback control calculation,plays a significant part during normal discharges in a magnetic fusion device,while the tokamak simulation code(TSC) is a nonl...Plasma control system(PCS),mainly developed for real-time feedback control calculation,plays a significant part during normal discharges in a magnetic fusion device,while the tokamak simulation code(TSC) is a nonlinear numerical model that studies the time evolution of an axisymmetric magnetized tokamak plasma.The motivation to combine these two codes for an integrated simulation is specified by the facts that the control system module in TSC is relatively simple compared to PCS,and meanwhile,newly-implemented control algorithms in PCS,before applied to experimental validations,require numerical validations against a tokamak plasma simulator that TSC can act as.In this paper,details of establishment of the integrated simulation framework between the EAST PCS and TSC are generically presented,and the poloidal power supply model and data acquisition model that have been implemented in this framework are described as well.In addition,the correctness of data interactions among the EAST PCS,Simulink and TSC is clearly confirmed during an interface test,and in a simulation test,the RZIP control scheme in the EAST PCS is numerically validated using this simulation platform.展开更多
Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A ...Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A supersonic H2-beam is effectively injected to increase fueling efficiency and generate a peaked density profile. Local fueling with a short-pulsed SMBI can increase the core plasma density and avoid the degradation arising from edge cooling. Second harmonic electron cyclotron current drive (ECCD) experiments were conducted by launching a focused Gaussian beam with a parallel refractive index of -0.05 ≤ Nil 〈 0.6. Results show that the electron cyclotron (EC) driven current is determined not only by Nil but also by local magnetic field (B) structure where the EC power is deposited. Detailed analysis of the observed NI and B dependences is in progress with a ray-tracing simulation using the TRAVIS code. Fast ion velocity distribution was investigated using fast protons generated by ion cyclotron resonant frequency (ICRF) minority heating. For the standard configuration in Heliotron J, charge ex- change neutral particle analysis (CX-NPA) measurements show higher effective temperature of fast minority protons in the on-axis resonance case compared to that in the HFS (high field side) off-axis resonance case. However, the increase in bulk ion temperature in the HFS resonance case is larger than that in the on-axis resonance.展开更多
A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V al...A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V alloy sheets.The microstructures,facture surfaces and microhardness of the welded joints were characterized by using optical microscope,scanning electron microscope (SEM) and Vickers microhardness tester.Comparing with welds such as gas tungsten arc and conventional plasma arc processes,the experimental results revealed the improvements when using the present process including:1) reducing prior-beta (β) grain size and prohibiting formation of hard martensite phases in the fusion zone due to the decreased heat input;and 2) better toughness and higher hardness.展开更多
Plasma control of forebody asymmetric vortices is mostly achieved by means of dielectric barrier discharge(DBD)plasma actuators. However, DBD actuators suffer from some disadvantages such as a weak induced body force,...Plasma control of forebody asymmetric vortices is mostly achieved by means of dielectric barrier discharge(DBD)plasma actuators. However, DBD actuators suffer from some disadvantages such as a weak induced body force, a singledirection induced jet, and an unclear control mechanism. We carry out wind tunnel experiments involving the forebody vortex control of a slender body at high angles of attack using an innovative extended DBD actuator, which has a stronger capacity to induce an electric wind than a DBD actuator. Through synchronous measurements of the pressure distribution and particle image velocimetry(PIV), the spatiotemporal evolution of the dynamic interactions between plasma-actuationinduced vortices and forebody asymmetric vortices is analyzed. The influence of plasma discharge on the boundary layer separation around a slender body and the spatial topological structures of asymmetric vortices are further surveyed, as the optimized actuation parameters. Extended DBD actuators are found to be more capable of controlling asymmetric vortices than DBD actuators, and a linear proportionality of the sectional lateral force versus the duty ratio is achieved.There exists an optimal normalized reduced frequency( f+= 2π fpd/U∞= 2.39) for asymmetric vortex control under the present experimental conditions. The research results can provide technical guidance for the control and reuse of forebody asymmetric vortices.展开更多
The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated...The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma=0.3 are conducted and show that confidence interval of hot-film sensor measurement is from−0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage.展开更多
A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a diel...A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter- pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000.展开更多
Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond...Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to- drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack.展开更多
Based on the theory of EHD (electronhydrodynamic), a simplified volume force model is applied to simulation to analyze the traits of plasma flow control in flow field, in which the cold plasma is generated by a DBD ...Based on the theory of EHD (electronhydrodynamic), a simplified volume force model is applied to simulation to analyze the traits of plasma flow control in flow field, in which the cold plasma is generated by a DBD (dielectric-barrier-discharge) actuator. With the para- electric action of volume force in electric field, acceleration characteristics of the plasma flow are investigated for different excitation intensities of RF (radio frequency) power for the actuator. Furthermore, the plasma acceleration leads to an asymmetric distribution of flow field, and hence induces the deflection of jet plume, then results in a significant deflection angle of 6.26° thrustvectoring effect. It appears that the plasma flow control technology is a new tentative method for the thrust-vectoring control of a space vehicle.展开更多
Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface...Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed.展开更多
A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasin...A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.展开更多
Since runaway electrons and magnetohydrodynamics activity can contribute to serious damage and energy losses in tokamaks, the effect of an external electric field on runaway electrons and hard x-ray spectra is investi...Since runaway electrons and magnetohydrodynamics activity can contribute to serious damage and energy losses in tokamaks, the effect of an external electric field on runaway electrons and hard x-ray spectra is investigated. Parameters such as the plasma current, the hard x-ray photons count and the mean energy of runaway electrons are measured. Positive and negative voltages of 300 V are applied at lOms after the plasma initiation (while the plasma is forming), at 15ms (while the plasma is stable) and at 20ms (while the plasma is fading away) to attain the most effective time of applying the external electric field. The number of hard x-ray photons has the most changes in the range of O-200 keV when the external electric fields are applied. Also in the duration of 20-30ms of plasma the greatest number of hard x-ray spectra is detected. When the external electric fields are applied, the mean energy of runaway electrons reduces significantly, especially at 15 ms (while the plasma is stab/e).展开更多
The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the...The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the performance of the system greatly. Compared with the classical PID control system, it has obvious advantages in the better dynamic response, the smaller quantity of calculation and the better robustness.展开更多
Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow...Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.展开更多
Tri-electrode sliding discharge(TED)plasma actuators are formed by adding a direct current(DC)exposed electrode to conventional dielectric barrier discharge(DBD)plasma actuators.There are three TED modes depending on ...Tri-electrode sliding discharge(TED)plasma actuators are formed by adding a direct current(DC)exposed electrode to conventional dielectric barrier discharge(DBD)plasma actuators.There are three TED modes depending on the polarity and amplitude of the DC supply:DBD discharge,extended discharge and sliding discharge.This paper evaluates the electrical,aerodynamic and mechanical characteristics of a TED plasma actuator based on energy analysis,particle image velocimetry experiments and calculations using the Navier-Stokes equation.The flow control performances of different discharge modes are quantitatively analyzed based on characteristic parameters.The results show that flow control performance in both extended discharge and sliding discharge is more significant than that of DBD,mainly because of the significantly higher(up to 141%)body force of TED compared with DBD.However,conductivity loss is the primary power loss caused by the DC polarity for TED discharge.Therefore,power consumption can be reduced by optimizing the dielectric material and thickness,thus improving the flow control performance of plasma actuators.展开更多
The potential of controlling shockwave-boundary layer interactions (SWBLIs) in air by plasma aerodynamic actua- tion is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducin...The potential of controlling shockwave-boundary layer interactions (SWBLIs) in air by plasma aerodynamic actua- tion is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducing shock is generated with a diamond-shaped shockwave generator located on the wall opposite to the surface electrodes, and the flow properties are studied with schlieren imaging and static wall pressure probes. The measurements show that the separation phenomenon is weakened with the plasma aerodynamic actuation, which is observed to have significant control authority over the inter- action. The main effect is the displacement of the reflected shock. Perturbations of incident and reflected oblique shocks interacting with the separation bubble in a rectangular cross section supersonic test section are produced by the plasma actuation. This interaction results in a reduction of the separation bubble size, as detected by phase-lock schlieren images. The measured static wall pressure also shows that the separation-inducing shock is restrained. Our results suggest that the boundary layer separation control through heating is the primary control mechanism.展开更多
The large thermal cutting equipment——The DHG. CNC numerical control plasma cutting machine is produced by The Ha’erbin Welding & Cutting Equipment Co. It specializes in the precise formation and baiting of nonf...The large thermal cutting equipment——The DHG. CNC numerical control plasma cutting machine is produced by The Ha’erbin Welding & Cutting Equipment Co. It specializes in the precise formation and baiting of nonferrous boards and thin carbon steel plates at a high speed. It avoids the disadvantage of flame cutting, which cannot cut nonferrous and thin steel plates.展开更多
The controlled pulse waveform is newly applied in keyhole plasma arc welding process. Two additional descending slopes can guarantee stable and smooth transition of keyhole closing and opening periodically. To develop...The controlled pulse waveform is newly applied in keyhole plasma arc welding process. Two additional descending slopes can guarantee stable and smooth transition of keyhole closing and opening periodically. To develop a closed-loop control system for this special welding process, the key point is the determination of system input and output variables. The averaged efflux plasma voltage during a pulse cycle is defined as the characteristic variable reflecting the real keyhole dimension. Research and experiments are conducted to explore the relationship between the characteristic variable and weld pe^Cormance. Results show that alternated peak current can significantly change the keyhole dimension and the penetration. It is proposed that the keyhole average dimension is taken as the controlled variable, and the peak pulse current value and slopes are taken as control variables.展开更多
To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were se...To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real time. The control strategy of one keyhole per pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover, the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.展开更多
There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The c...There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented.展开更多
基金supported by the External Cooperation Program of BIC,Chinese Academy of Sciences(No.GJHZ201303)the National Magnetic Confinement Fusion Research Program of China(Nos.2014GB10300,2012GB105000 and 2011GB10600)+1 种基金National Natural Science Foundation of China(No.11205200)the Anhui Provincial Science Foundation for Outstanding Young Talent of China(No.2012SQRL265)
文摘KTX(Keda Torus for eXperiment)is a new reversed field pinch device.The KTX plasma control system(PCS)can provide real-time,stable,flexible plasma control which is designed by ASIPP(Institute of Plasma Physics,Chinese Academy of Sciences),based on the Linux cluster system and EPICS(Experimental Physics and Industrial Control System)framework,and developed from DIII-D(Doublet III-D)PCS.The control of the equilibrium field in KTX uses a PID(Proportional-Integral-Derivative)feedback controller.The control of the gas injection is an open loop control.The plasma control simulation system is one part of the plasma control system,which is used to test the plasma control algorithm if it is revised and updated.The KTX PCS has been successfully tested using HT-7(Hefei Torus 7)experiment data in simulation mode.In the next phase,an error field feedback control and KTX simulator will be added to the KTX PCS,and the KTX PCS will be applied in experiments in the future.
基金Supported by the National M agnetic Confinement Fusion Science Program of China(No.2014GB1O3000)the National Natural Science Foundation of China(No.11205200).
文摘Plasma control system(PCS),mainly developed for real-time feedback control calculation,plays a significant part during normal discharges in a magnetic fusion device,while the tokamak simulation code(TSC) is a nonlinear numerical model that studies the time evolution of an axisymmetric magnetized tokamak plasma.The motivation to combine these two codes for an integrated simulation is specified by the facts that the control system module in TSC is relatively simple compared to PCS,and meanwhile,newly-implemented control algorithms in PCS,before applied to experimental validations,require numerical validations against a tokamak plasma simulator that TSC can act as.In this paper,details of establishment of the integrated simulation framework between the EAST PCS and TSC are generically presented,and the poloidal power supply model and data acquisition model that have been implemented in this framework are described as well.In addition,the correctness of data interactions among the EAST PCS,Simulink and TSC is clearly confirmed during an interface test,and in a simulation test,the RZIP control scheme in the EAST PCS is numerically validated using this simulation platform.
基金supported by the JSPS-CAS Core University Program in the field of "'Plasma and Nuclear Fusion"the Collaboration Program of the Laboratory for Complex Energy Processes. IAE. Kyoto University. the NIFS Collaborative flesearch Program (NIFS10KUHL030. etc.)+1 种基金the NIFS/NINS project of Formation of International Network for Scientific Collaborationsthe Grant-in-Aid for Sci.Research. MEXT
文摘Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A supersonic H2-beam is effectively injected to increase fueling efficiency and generate a peaked density profile. Local fueling with a short-pulsed SMBI can increase the core plasma density and avoid the degradation arising from edge cooling. Second harmonic electron cyclotron current drive (ECCD) experiments were conducted by launching a focused Gaussian beam with a parallel refractive index of -0.05 ≤ Nil 〈 0.6. Results show that the electron cyclotron (EC) driven current is determined not only by Nil but also by local magnetic field (B) structure where the EC power is deposited. Detailed analysis of the observed NI and B dependences is in progress with a ray-tracing simulation using the TRAVIS code. Fast ion velocity distribution was investigated using fast protons generated by ion cyclotron resonant frequency (ICRF) minority heating. For the standard configuration in Heliotron J, charge ex- change neutral particle analysis (CX-NPA) measurements show higher effective temperature of fast minority protons in the on-axis resonance case compared to that in the HFS (high field side) off-axis resonance case. However, the increase in bulk ion temperature in the HFS resonance case is larger than that in the on-axis resonance.
基金Project(2009CB939705) supported by the National Basic Research Program of ChinaProject(200233) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (FANEDD)
文摘A novel dynamically controlled plasma arc welding process was introduced,which is able tominimize heat input into the workpiece materials while maintaining desired full penetration,and it was used to weld Ti-6Al-4V alloy sheets.The microstructures,facture surfaces and microhardness of the welded joints were characterized by using optical microscope,scanning electron microscope (SEM) and Vickers microhardness tester.Comparing with welds such as gas tungsten arc and conventional plasma arc processes,the experimental results revealed the improvements when using the present process including:1) reducing prior-beta (β) grain size and prohibiting formation of hard martensite phases in the fusion zone due to the decreased heat input;and 2) better toughness and higher hardness.
基金National Natural Science Foundation of China(Grant Nos.51607188 and 61971345)the Foundation for Key Laboratories of National Defense Science and Technology,China(Grant No.614220202011801)+1 种基金the Natural Science Basic Research Program of Shaanxi Province of China(Grant No.2019JM-393)Xi’an Municipal Science and Technology Project of China(Grant No.201805037YD15CG21(28)).
文摘Plasma control of forebody asymmetric vortices is mostly achieved by means of dielectric barrier discharge(DBD)plasma actuators. However, DBD actuators suffer from some disadvantages such as a weak induced body force, a singledirection induced jet, and an unclear control mechanism. We carry out wind tunnel experiments involving the forebody vortex control of a slender body at high angles of attack using an innovative extended DBD actuator, which has a stronger capacity to induce an electric wind than a DBD actuator. Through synchronous measurements of the pressure distribution and particle image velocimetry(PIV), the spatiotemporal evolution of the dynamic interactions between plasma-actuationinduced vortices and forebody asymmetric vortices is analyzed. The influence of plasma discharge on the boundary layer separation around a slender body and the spatial topological structures of asymmetric vortices are further surveyed, as the optimized actuation parameters. Extended DBD actuators are found to be more capable of controlling asymmetric vortices than DBD actuators, and a linear proportionality of the sectional lateral force versus the duty ratio is achieved.There exists an optimal normalized reduced frequency( f+= 2π fpd/U∞= 2.39) for asymmetric vortex control under the present experimental conditions. The research results can provide technical guidance for the control and reuse of forebody asymmetric vortices.
基金the European Commission through the Research and Innovation action DRAGY(Drag Reduction via Turbulent Boundary Layer Flow Control)under Grant No.690623+1 种基金the Ministry of Industry and Information Technology(MIIT)of the Chinese governmentsupport received from National Natural Science Foundation of China(No.11572256).
文摘The turbulent boundary layer control on NACA 0012 airfoil with Mach number ranging from 0.3 to 0.5 by a spanwise array of dielectric barrier discharge(DBD)plasma actuators by hot-film sensor technology is investigated.Due to temperature change mainly caused through heat produced along with plasma will lead to measurement error of shear stress measured by hot-film sensor,the correction method that takes account of the change measured by another sensor is used and works well.In order to achieve the value of shear stress change,we combine computational fluid dynamics computation with experiment to calibrate the hot-film sensor.To test the stability of the hot-film sensor,seven repeated measurements of shear stress at Ma=0.3 are conducted and show that confidence interval of hot-film sensor measurement is from−0.18 to 0.18 Pa and the root mean square is 0.11 Pa giving a relative error 0.5%over all Mach numbers in this experiment.The research on the turbulent boundary layer control with DBD plasma actuators demonstrates that the control makes shear stress increase by about 6%over the three Mach numbers,which is thought to be reliable through comparing it with the relative error 0.5%,and the value is hardly affected by burst frequency and excitation voltage.
文摘A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter- pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000.
基金supported by National Natural Science Foundation of China(Nos.51276197,51207169 and 51336011)
文摘Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to- drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack.
基金supported by National Natural Science Foundation of China (No.90716025)
文摘Based on the theory of EHD (electronhydrodynamic), a simplified volume force model is applied to simulation to analyze the traits of plasma flow control in flow field, in which the cold plasma is generated by a DBD (dielectric-barrier-discharge) actuator. With the para- electric action of volume force in electric field, acceleration characteristics of the plasma flow are investigated for different excitation intensities of RF (radio frequency) power for the actuator. Furthermore, the plasma acceleration leads to an asymmetric distribution of flow field, and hence induces the deflection of jet plume, then results in a significant deflection angle of 6.26° thrustvectoring effect. It appears that the plasma flow control technology is a new tentative method for the thrust-vectoring control of a space vehicle.
基金supported by National Science and Technology Major Project(No.J2019-II-0014-0035)。
文摘Effective control of hypersonic transition is essential.In order to avoid affecting the structural proflle of the aircraft,as well as reducing power consumption and electromagnetic interference,a low-frequency surface arc plasma disturbance experiment to promote hypersonic transition was carried out in theΦ0.25 m double-throat Ludwieg tube wind tunnel at Huazhong University of Science and Technology.Contacting printed circuit board sensors and non-contact focused laser differential interferometry testing technology were used in combination.Experimental results showed that the low-frequency surface arc plasma actuation had obvious stimulation effects on the second-mode unstable wave and could promote boundary layer transition by changing the spectral characteristics of the second-mode unstable wave.At the same time,the plasma actuation could promote energy exchange between the second-mode unstable wave and other unstable waves.Finally,the corresponding control mechanism is discussed.
文摘A new kind of control system for keyhole plasma arc welding (K-PAW) was developed based on the computer and the Graphics Language--LabVIEW. It can set and output the required current waveforms with desired decreasing slopes so that the corresponding "opening and closing" of keyhole can occur periodically. With this control strategy of welding current waveforms, the workpiece is fully penetrated while no burn-through Occurs. Keyhole plasma arc welding experiments were conducted to verify the stability and reliability of the developed system.
文摘Since runaway electrons and magnetohydrodynamics activity can contribute to serious damage and energy losses in tokamaks, the effect of an external electric field on runaway electrons and hard x-ray spectra is investigated. Parameters such as the plasma current, the hard x-ray photons count and the mean energy of runaway electrons are measured. Positive and negative voltages of 300 V are applied at lOms after the plasma initiation (while the plasma is forming), at 15ms (while the plasma is stable) and at 20ms (while the plasma is fading away) to attain the most effective time of applying the external electric field. The number of hard x-ray photons has the most changes in the range of O-200 keV when the external electric fields are applied. Also in the duration of 20-30ms of plasma the greatest number of hard x-ray spectra is detected. When the external electric fields are applied, the mean energy of runaway electrons reduces significantly, especially at 15 ms (while the plasma is stab/e).
基金The project supported by the National Science Foundation of China (No. 10175022) and the Tenth-Five-Year Nuclear Energy Development of the Commission of Science Technology and Industry for National Defense, and of the China National Nuclear Corporation
文摘The design of the control system for radial plasma position on HL-2A based on model reference adaptive control (MRAC) principle is presented in this paper. The simulated results show that it can be used to improve the performance of the system greatly. Compared with the classical PID control system, it has obvious advantages in the better dynamic response, the smaller quantity of calculation and the better robustness.
基金National Natural Science Foundation of China(Nos.50676094,50676095,50776086 and 50736007)Fundamental Researches of National Defense in Chinese Academy of Sciences(No.AB20070090)
文摘Influence of plasma actuators as a flow separation control device was investigated experimentally. Hump model was used to demonstrate the effect of plasma actuators on external flow separation, while for internal flow separation a set of compressor cascade was adopted. In order to investigate the modification of the flow structure by the plasma actuator, the flow field was examined non-intrusively by particle image velocimetry measurements in the hump model experiment and by a hot film probe in the compressor cascade experiment. The results showed that the plasma actuator could be effective in controlling the flow separation both over the hump and in the compressor cascade when the incoming velocity was low. As the incoming velocity increased, the plasma actuator was less effective. It is urgent to enhance the intensity of the plasma actuator for its better application. Methods to increase the intensity of plasma actuator were also studied.
基金the National Natural Science Foundation of China(Grant Nos.12175177 and 61971345)the Foundation for Key Laboratories of National Defense Science and Technology of China(Grant No.614220120030810)。
文摘Tri-electrode sliding discharge(TED)plasma actuators are formed by adding a direct current(DC)exposed electrode to conventional dielectric barrier discharge(DBD)plasma actuators.There are three TED modes depending on the polarity and amplitude of the DC supply:DBD discharge,extended discharge and sliding discharge.This paper evaluates the electrical,aerodynamic and mechanical characteristics of a TED plasma actuator based on energy analysis,particle image velocimetry experiments and calculations using the Navier-Stokes equation.The flow control performances of different discharge modes are quantitatively analyzed based on characteristic parameters.The results show that flow control performance in both extended discharge and sliding discharge is more significant than that of DBD,mainly because of the significantly higher(up to 141%)body force of TED compared with DBD.However,conductivity loss is the primary power loss caused by the DC polarity for TED discharge.Therefore,power consumption can be reduced by optimizing the dielectric material and thickness,thus improving the flow control performance of plasma actuators.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.51336011)the National Natural Science Foundationof China(Grant Nos.51207169 and 51276197)
文摘The potential of controlling shockwave-boundary layer interactions (SWBLIs) in air by plasma aerodynamic actua- tion is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducing shock is generated with a diamond-shaped shockwave generator located on the wall opposite to the surface electrodes, and the flow properties are studied with schlieren imaging and static wall pressure probes. The measurements show that the separation phenomenon is weakened with the plasma aerodynamic actuation, which is observed to have significant control authority over the inter- action. The main effect is the displacement of the reflected shock. Perturbations of incident and reflected oblique shocks interacting with the separation bubble in a rectangular cross section supersonic test section are produced by the plasma actuation. This interaction results in a reduction of the separation bubble size, as detected by phase-lock schlieren images. The measured static wall pressure also shows that the separation-inducing shock is restrained. Our results suggest that the boundary layer separation control through heating is the primary control mechanism.
文摘The large thermal cutting equipment——The DHG. CNC numerical control plasma cutting machine is produced by The Ha’erbin Welding & Cutting Equipment Co. It specializes in the precise formation and baiting of nonferrous boards and thin carbon steel plates at a high speed. It avoids the disadvantage of flame cutting, which cannot cut nonferrous and thin steel plates.
基金Acknowledgement The authors would like to thank the financial support for this research from the National Natural Science Foundation of China ( Key Program Grant No. 50936003).
文摘The controlled pulse waveform is newly applied in keyhole plasma arc welding process. Two additional descending slopes can guarantee stable and smooth transition of keyhole closing and opening periodically. To develop a closed-loop control system for this special welding process, the key point is the determination of system input and output variables. The averaged efflux plasma voltage during a pulse cycle is defined as the characteristic variable reflecting the real keyhole dimension. Research and experiments are conducted to explore the relationship between the characteristic variable and weld pe^Cormance. Results show that alternated peak current can significantly change the keyhole dimension and the penetration. It is proposed that the keyhole average dimension is taken as the controlled variable, and the peak pulse current value and slopes are taken as control variables.
文摘To improve the penetrating ability and the welding quality of keyhole plasma arc welding, a novel penetration closed loop control system was established. In the system, welding current and plasma gas flow rate were selected as adjusting variables. The wavelet method was used to detect penetration status from welding arc voltage in real time. The control strategy of one keyhole per pulse was adapted to fulfill stable and high quality welding process. Experimental results show that the developed system can apparently increase the penetrating force of plasma arc and keyhole plasma arc welding is realized successfully in stainless steel with 10 mm in thickness. Moreover, the disturbances of gradual change and break change from 3 mm to 6 mm in thickness are come over due to the good response property of the developed system.
文摘There is a strong magnetic coupling between poloidal field coils of superconducting tokamak HT-7, especially between ohinic heating and vertical field coils. These coils are connected to individual power supply. The control system for the plasma current and horizontal position control has been designed and showed satisfactory results with the feedback control of multivari- able feedforward-decoupling and var-parameter PID controller to simultaneously modulate power supplies. The design and analysls of the control system is presented.