Vacuum arc ion sources are known for delivering high currents of ion beams in many technological applications. There is a great need in the present ion accelerator injection research for a titanium vacuum arc source t...Vacuum arc ion sources are known for delivering high currents of ion beams in many technological applications. There is a great need in the present ion accelerator injection research for a titanium vacuum arc source to produce high-ionized plasma, in which its parameter is extremely important to match the extractors geometry and the extraction voltage. In this paper, the radial and angular distributions of the titanium cathodic vacuum arc plasma parameters are measured by a cylindrical Langmuir probe and analyzed by the Druyvesteyn method from the I-V curves. The electron density ne is about 10^(17)m^(-3) and the effective electron temperature Tefr is in the range of 6.12-11.11 eV in the free expansion cup before the ion extraction. The measured distribution of ne over the expansion cross-section is non-uniform and axially unsymmetrical with its form similar to the Gaussian distribution, and most of the plasma is concentrated into an area whose radius is smaller than 5 mm. Teff has a nearly uniform distribution over the expansion cross-section during the discharge. The results of the plasma parameters' non-uniformity encourage the researchers to make some optimization designs to improve the parameter distributions, and then to facilitate ion extraction.展开更多
A method for the fast measurement of electron temperature and density with temporal resolution in transient plasma has been implemented by Langmuir probe. The diagnostic system consists of a single Lang- muir probe dr...A method for the fast measurement of electron temperature and density with temporal resolution in transient plasma has been implemented by Langmuir probe. The diagnostic system consists of a single Lang- muir probe driven by a high frequency sinusoidal voltage. The current and voltage spectrum on the probe were detected synchronously by an oscilloscope with sampling rate being at least 5 times higher than the frequency of sweep voltage. The system has been used to diagnose the transient plasma generated by hypervelocity-impact of LY12 aluminum projectile into LY12 aluminum target.展开更多
Filtered cathodic vacuum arc(FCVA)deposition is regarded as an important technique for the synthesis of tetrahedral amorphous carbon(ta-C)films due to its high ionization rate,high deposition rate and effective filtra...Filtered cathodic vacuum arc(FCVA)deposition is regarded as an important technique for the synthesis of tetrahedral amorphous carbon(ta-C)films due to its high ionization rate,high deposition rate and effective filtration of macroparticles.Probing the plasma characteristics of arc discharge contributes to understanding the deposition mechanism of ta-C films on a microscopic level.This work focuses on the plasma diagnosis of an FCVA discharge using a Langmuir dualprobe system with a discrete Fourier transform smoothing method.During the ta-C film deposition,the arc current of graphite cathodes and deposition pressure vary from 30 to 90 A and from 0.3 to 0.9 Pa,respectively.The plasma density increases with arc current but decreases with pressure.The carbon plasma density generated by the arc discharge is around the order of10^(10)cm^(-3).The electron temperature varies in the range of 2-3.5 eV.As the number of cathodic arc sources and the current of the focused magnetic coil increase,the plasma density increases.The ratio of the intensity of the D-Raman peak and G-Raman peak(I_(D)/I_(G))of the ta-C films increases with increasing plasma density,resulting in a decrease in film hardness.It is indicated that the mechanical properties of ta-C films depend not only on the ion energy but also on the carbon plasma density.展开更多
A Langmuir probe plasma diagnostic system was developed to measure the plasma parameters in a PECVD vacuum coating machine. The plasma was a capacitively coupled plasma (CCP) driven by a radio-frequency (RF) power...A Langmuir probe plasma diagnostic system was developed to measure the plasma parameters in a PECVD vacuum coating machine. The plasma was a capacitively coupled plasma (CCP) driven by a radio-frequency (RF) power supply. To avoid the disturbance of radio-frequency field on the Langmuir probe measurement, a passive compensation method was applied. This method allowed the 'dc' component to be passed and measured in the probe circuit. It was found that the electron temperature in the range from 2.7 eV to 6.4 eV decreased with the increase in RF power. The measured plasma density ranged from 8×10^16 m^-3 to 0.85×10^15 m^-3 and increased with the increase in RF power.展开更多
Conventional Langmuir probe techniques usually face the difficulty of being used in processing plasmas where dielectric compounds form,due to rapid failure by surface insulation.A solution to the problem,the so-called...Conventional Langmuir probe techniques usually face the difficulty of being used in processing plasmas where dielectric compounds form,due to rapid failure by surface insulation.A solution to the problem,the so-called harmonic probe technique,had been proposed and shown effectiveness.In this study,the technique was investigated in detail by changing bias signal amplitudes V_0,and evaluated its accuracy by comparing with the conventional Langmuir probe.It was found that the measured electron temperature Teincreased with V_0,but showing a relatively stable region when V_0〉Te/e in which it was close to the true Tevalue.This is contrary to the general consideration that V_0should be smaller than Te/e for accurate measurement of Te.The phenomenon is interpreted by the non-negligible change of the ion current with V_0at low V_0values.On the other hand,the measured nialso increased with V_0due to the sheath expansion,and to improve the accuracy of niit needs to linearly extrapolate the ni-V_0trend to V_0=0.The results were applied to a diagnosis of the plasmas for chemical vapor deposition of diamond-like carbon thin films and the relationship between plasma parameters and films deposition rates was obtained.展开更多
文摘Vacuum arc ion sources are known for delivering high currents of ion beams in many technological applications. There is a great need in the present ion accelerator injection research for a titanium vacuum arc source to produce high-ionized plasma, in which its parameter is extremely important to match the extractors geometry and the extraction voltage. In this paper, the radial and angular distributions of the titanium cathodic vacuum arc plasma parameters are measured by a cylindrical Langmuir probe and analyzed by the Druyvesteyn method from the I-V curves. The electron density ne is about 10^(17)m^(-3) and the effective electron temperature Tefr is in the range of 6.12-11.11 eV in the free expansion cup before the ion extraction. The measured distribution of ne over the expansion cross-section is non-uniform and axially unsymmetrical with its form similar to the Gaussian distribution, and most of the plasma is concentrated into an area whose radius is smaller than 5 mm. Teff has a nearly uniform distribution over the expansion cross-section during the discharge. The results of the plasma parameters' non-uniformity encourage the researchers to make some optimization designs to improve the parameter distributions, and then to facilitate ion extraction.
文摘A method for the fast measurement of electron temperature and density with temporal resolution in transient plasma has been implemented by Langmuir probe. The diagnostic system consists of a single Lang- muir probe driven by a high frequency sinusoidal voltage. The current and voltage spectrum on the probe were detected synchronously by an oscilloscope with sampling rate being at least 5 times higher than the frequency of sweep voltage. The system has been used to diagnose the transient plasma generated by hypervelocity-impact of LY12 aluminum projectile into LY12 aluminum target.
基金supported by the National Key Research and Development Program of China(No.2016YFB0101206)the Science and Technology Program of Wuhu(No.2021hg11)the Natural Science Foundation of the Anhui Higher Education in Institutions of China(No.2022AH050300)。
文摘Filtered cathodic vacuum arc(FCVA)deposition is regarded as an important technique for the synthesis of tetrahedral amorphous carbon(ta-C)films due to its high ionization rate,high deposition rate and effective filtration of macroparticles.Probing the plasma characteristics of arc discharge contributes to understanding the deposition mechanism of ta-C films on a microscopic level.This work focuses on the plasma diagnosis of an FCVA discharge using a Langmuir dualprobe system with a discrete Fourier transform smoothing method.During the ta-C film deposition,the arc current of graphite cathodes and deposition pressure vary from 30 to 90 A and from 0.3 to 0.9 Pa,respectively.The plasma density increases with arc current but decreases with pressure.The carbon plasma density generated by the arc discharge is around the order of10^(10)cm^(-3).The electron temperature varies in the range of 2-3.5 eV.As the number of cathodic arc sources and the current of the focused magnetic coil increase,the plasma density increases.The ratio of the intensity of the D-Raman peak and G-Raman peak(I_(D)/I_(G))of the ta-C films increases with increasing plasma density,resulting in a decrease in film hardness.It is indicated that the mechanical properties of ta-C films depend not only on the ion energy but also on the carbon plasma density.
基金the Enterprise Postdoctoral Research Fund of Liaoning Province(BSH:2004921032)National Natural Science Foundation of China(No.60774093)
文摘A Langmuir probe plasma diagnostic system was developed to measure the plasma parameters in a PECVD vacuum coating machine. The plasma was a capacitively coupled plasma (CCP) driven by a radio-frequency (RF) power supply. To avoid the disturbance of radio-frequency field on the Langmuir probe measurement, a passive compensation method was applied. This method allowed the 'dc' component to be passed and measured in the probe circuit. It was found that the electron temperature in the range from 2.7 eV to 6.4 eV decreased with the increase in RF power. The measured plasma density ranged from 8×10^16 m^-3 to 0.85×10^15 m^-3 and increased with the increase in RF power.
文摘Conventional Langmuir probe techniques usually face the difficulty of being used in processing plasmas where dielectric compounds form,due to rapid failure by surface insulation.A solution to the problem,the so-called harmonic probe technique,had been proposed and shown effectiveness.In this study,the technique was investigated in detail by changing bias signal amplitudes V_0,and evaluated its accuracy by comparing with the conventional Langmuir probe.It was found that the measured electron temperature Teincreased with V_0,but showing a relatively stable region when V_0〉Te/e in which it was close to the true Tevalue.This is contrary to the general consideration that V_0should be smaller than Te/e for accurate measurement of Te.The phenomenon is interpreted by the non-negligible change of the ion current with V_0at low V_0values.On the other hand,the measured nialso increased with V_0due to the sheath expansion,and to improve the accuracy of niit needs to linearly extrapolate the ni-V_0trend to V_0=0.The results were applied to a diagnosis of the plasmas for chemical vapor deposition of diamond-like carbon thin films and the relationship between plasma parameters and films deposition rates was obtained.
基金Ministry of Education Returned Overseas Stuff to Start Research and Fund Projects(E07C30010)High Energy,High Density,High Valence Vacuum Discharge Plasma Research Projects(EJ06014)