A macro-cell was used to study the phenomenon of anode striation on a 34 VGA Shadow Mask Plasma Display Panel (SMPDP). The breakdown process in the sustaining period of the macro-cell was taken by an Intensified Cha...A macro-cell was used to study the phenomenon of anode striation on a 34 VGA Shadow Mask Plasma Display Panel (SMPDP). The breakdown process in the sustaining period of the macro-cell was taken by an Intensified Charge Coupled Device(ICCD) with narrow band filters. The mechanism of formation and evolution of the anode striation on SMPDP were investigated. The influence of the width of the electrode, the sustaining voltage, sustaining frequency and the voltage of the shadow mask on the anode striation was also studied. The results showed that the width of the electrodes, the sustaining voltage and frequency had a strong influence on the anode striation. The voltage of the shadow mask, however, hardly affected the anode striation, the firing voltage or the sustaining voltage.展开更多
The relationship between infrared light (IR) and vacuum ultraviolet (VUV) emission in shadow mask plasma display panels (SMPDP) at high xenon content and high voltage is investigated. The respective ratios of VI...The relationship between infrared light (IR) and vacuum ultraviolet (VUV) emission in shadow mask plasma display panels (SMPDP) at high xenon content and high voltage is investigated. The respective ratios of VIS/IR-823 am, VIS/IR-828 nm and of efficacy/VIS/IR-823 nm, efficacy/VIS/IR-823 nm are calculated to determine the behavior of the xenon excitation efficiency and the electron excitation efficiency as a function of the driving voltage and xenon content. It is found that the xenon excitation efficiency is almost independent of the driving voltage, and increases approximately linearly with the xenon content. The values for efficacy/VIS/IR-828 nm increase rapidly with the xenon content, but saturate at a xenon ratio of about 30% while, on the other hand, the efficacy/VIS/IR-823 nm values decrease continuously with the xenon content.展开更多
基金supported by the National Natural Science Foundation of China(Nos.60271016 and 60271033)
文摘A macro-cell was used to study the phenomenon of anode striation on a 34 VGA Shadow Mask Plasma Display Panel (SMPDP). The breakdown process in the sustaining period of the macro-cell was taken by an Intensified Charge Coupled Device(ICCD) with narrow band filters. The mechanism of formation and evolution of the anode striation on SMPDP were investigated. The influence of the width of the electrode, the sustaining voltage, sustaining frequency and the voltage of the shadow mask on the anode striation was also studied. The results showed that the width of the electrodes, the sustaining voltage and frequency had a strong influence on the anode striation. The voltage of the shadow mask, however, hardly affected the anode striation, the firing voltage or the sustaining voltage.
基金supported by National Natural Science Foundation of China (No. 60571033)the National Hi'Tech projects of China (No. 2008AA03A308)Programme of Introducing Talents of Discipline to Universities of China (B07027)
文摘The relationship between infrared light (IR) and vacuum ultraviolet (VUV) emission in shadow mask plasma display panels (SMPDP) at high xenon content and high voltage is investigated. The respective ratios of VIS/IR-823 am, VIS/IR-828 nm and of efficacy/VIS/IR-823 nm, efficacy/VIS/IR-823 nm are calculated to determine the behavior of the xenon excitation efficiency and the electron excitation efficiency as a function of the driving voltage and xenon content. It is found that the xenon excitation efficiency is almost independent of the driving voltage, and increases approximately linearly with the xenon content. The values for efficacy/VIS/IR-828 nm increase rapidly with the xenon content, but saturate at a xenon ratio of about 30% while, on the other hand, the efficacy/VIS/IR-823 nm values decrease continuously with the xenon content.