Wide-bandgap gallium oxide(Ga_(2)O_(3))is one of the most promising semiconductor materials for solar-blind(200 nm to 280 nm)photodetection.In its amorphous form,amorphous gallium oxide(a-Ga_(2)O_(3))maintains its int...Wide-bandgap gallium oxide(Ga_(2)O_(3))is one of the most promising semiconductor materials for solar-blind(200 nm to 280 nm)photodetection.In its amorphous form,amorphous gallium oxide(a-Ga_(2)O_(3))maintains its intrinsic optoelectronic properties while can be prepared at a low growth temperature,thus it is compatible with Si integrated circuits(ICs)technology.Herein,the a-Ga_(2)O_(3) film is directly deposited on pre-fabricated Au interdigital electrodes by plasma enhanced atomic layer deposition(PE-ALD)at a growth temperature of 250°C.The stoichiometric a-Ga_(2)O_(3) thin film with a low defect density is achieved owing to the mild PE-ALD condition.As a result,the fabricated Au/a-Ga_(2)O_(3)/Au photodetector shows a fast time response,high responsivity,and excellent wavelength selectivity for solar-blind photodetection.Furthermore,an ultra-thin MgO layer is deposited by PE-ALD to passivate the Au/a-Ga_(2)O_(3)/Au interface,resulting in the responsivity of 788 A/W(under 254 nm at 10 V),a 250-nm-to-400-nm rejection ratio of 9.2×10^(3),and the rise time and the decay time of 32 ms and 6 ms,respectively.These results demonstrate that the a-Ga_(2)O_(3) film grown by PE-ALD is a promising candidate for high-performance solar-blind photodetection and potentially can be integrated with Si ICs for commercial production.展开更多
Metal aluminum (A1) thin films are prepared by 2450 MHz electron cyclotron resonance plasma-assisted atomic layer deposition on glass and p-Si substrates using trimethylaluminum as the precursor and hydrogen as the ...Metal aluminum (A1) thin films are prepared by 2450 MHz electron cyclotron resonance plasma-assisted atomic layer deposition on glass and p-Si substrates using trimethylaluminum as the precursor and hydrogen as the reductive gas. We focus our attention on the plasma source for the thin-film preparation and annealing of the as-deposited films relative to the surface square resistivity. The square resistivity of as-deposited A1 films is greatly reduced after annealing and almost reaches the value of bulk metal. Through chemical and structural analysis, we conclude that the square resistivity is determined by neither the contaminant concentration nor the surface morphology, but by both the crystallinity and crystal size in this process.展开更多
In this work,the GaN thin films were directly deposited on multilayer graphene(MLG)by plasma-enhanced atomic layer deposition.The deposition was carried out at a low temperature using triethylgallium(TEGa)precursor an...In this work,the GaN thin films were directly deposited on multilayer graphene(MLG)by plasma-enhanced atomic layer deposition.The deposition was carried out at a low temperature using triethylgallium(TEGa)precursor and Ar/N2/H2 plasma.Chemical properties of the bulk GaN and GaN-graphene interface were analyzed using X-ray photoelectron spectroscopy.The sharp interface between GaN and graphene was verified via X-ray reflectivity and transmission electron microscope.The microstructures and the nucleation behaviors of the GaN grown on graphene have been also studied.The results of grazing incidence X-ray diffraction and Raman spectrum indicate that the as-deposited sample is polycrystalline with wurtzite structure and has a weakly tensile stress.Optical properties of the sample were investigated by photoluminescence(PL)at room temperature.The successful growth of GaN on MLG at a low temperature opens up the possibility of ameliorating the performance of electronic and optical devices based on GaN/graphene heterojunction.展开更多
Titanium-aluminum-nitride(TiAlN) films were grown by plasma-enhanced atomic layer deposition(PEALD)on 316 L stainless steel at a deposition temperature of 200 °C. A supercycle, consisting of one AlN and ten T...Titanium-aluminum-nitride(TiAlN) films were grown by plasma-enhanced atomic layer deposition(PEALD)on 316 L stainless steel at a deposition temperature of 200 °C. A supercycle, consisting of one AlN and ten TiN subcycles, was used to prepare TiAlN films with a chemical composition of Ti(0.25)Al(0.25)N(0.50). The addition of AlN to TiN resulted in an increased electrical resistivity of TiAlN films of 2800 μΩ cm, compared with 475 μΩ cm of TiN films, mainly due to the high electrical resistivity of AlN and the amorphous structure of TiAlN. However, potentiostatic polarization measurements showed that amorphous TiAlN films exhibited excellent corrosion resistance with a corrosion current density of 0.12 μA/cm^2, about three times higher than that of TiN films, and about 12.5 times higher than that of 316 L stainless steel.展开更多
Carbon materials with various structures were produced via plasma-enhanced chemical vapor deposition by controlling substrate temperature and mixed gases in the atmosphere. Scanning electron microscopy(SEM), transmi...Carbon materials with various structures were produced via plasma-enhanced chemical vapor deposition by controlling substrate temperature and mixed gases in the atmosphere. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM) and Raman spectroscopy were employed to investigate the morphology and structure of the materials. The results show that at a low substrate temperature(100 ~C) in CHa:Ar(flow rate ratio was 100 cm3/min:10 cm3/min), amorphous carbon formed on Si(100) that could act as a support for the growth of carbon nanobelt and layer graphene at 800 ~C. Vertically oriented multi-layer graphene nanosheets(GNs) were catalyst-free synthesized on Si and Ni foam at 800 ~C in a mixture of CHa:Ar(20 cm3/min:60, 80 and 100 cm3/min). The capacitor character investigated by cyclic voltammetry and galvanostatic charge/discharge indicates that for the as-synthesized GNs, the electrochemical capacitance is very small(16 F/g at current density of 16 A/g). However, having been treated in acidic solution, the GNs exhibited good capacitive behavior, with a capacitance of 166 F/g, and after 800 charge/discharge cycles at 32 A/g, the capacitance could retain about 88.4%. The enhancement of specific capacitance is attributed to the increase of specific surface area after etching treatment of them.展开更多
In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) an...In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) analysis indicates that substitutional nitrogen atoms (-395.9 eV) with 1 atom% are effectively doped into TiO2 films. UV-VIS spectrometry shows that the in-situ nitrogen doping method indeed enhances the visible-activity of TiO2 films in the 425-550 nm range, and the results of the performance tests of the N-doped TiO2 films also imply that the photocatalysis activity is improved by in-situ doping. The in-situ doping mechanism of the N-doped TiO2 film is suggested according to the XPS results and the typical atomic layer deposition process.展开更多
This paper discusses the effect of N2 plasma treatment before dielectric deposition on the electrical performance of a Al203/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MISHEMT),with A...This paper discusses the effect of N2 plasma treatment before dielectric deposition on the electrical performance of a Al203/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MISHEMT),with Al203 deposited by atomic layer deposition.The results indicated that the gate leakage was decreased two orders of magnitude after the Al203/AlGaN interface was pretreated by N2 plasma.Furthermore,effects of N2 plasma pretreatrnent on the electrical properties of the AlGaN/Al2O3 interface were investigated by x-ray photoelectron spectroscopy measurements and the interface quality between Al203 and AlGaN film was improved.展开更多
目的提高聚碳酸亚丙酯(PPC)薄膜的阻隔性。方法采用等离子体增强化学气相沉积法在PPC薄膜表面上沉积SiOx层,并以阻氧性能为工艺评估指标。结果采用等离子体增强化学气相沉积法可以在PPC薄膜表面沉积SiOx层,最佳工艺条件为沉积功率150 W...目的提高聚碳酸亚丙酯(PPC)薄膜的阻隔性。方法采用等离子体增强化学气相沉积法在PPC薄膜表面上沉积SiOx层,并以阻氧性能为工艺评估指标。结果采用等离子体增强化学气相沉积法可以在PPC薄膜表面沉积SiOx层,最佳工艺条件为沉积功率150 W、六甲基硅氧烷流量为6 m L/min,氧化流量为12 m L/min、沉积时间60 min,通过沉积SiOx层,PPC薄膜的阻氧性能得到了有效的提高。结论采用等离子化学气相沉积法在PPC薄膜上沉积SiOx层可明显提高对氧气、水蒸气和紫外线的阻隔性能,并保持原有韧性。展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant No.21872019 and the Innovation Group Project of Sichuan Province under Grant No.20CXTD0090This work was also partly supported by the Slovenian Research Agency under Grants No.P2-0412 and No.J2-2498 for A.Mavric and M.Valant,and No.Z1-3189 for N.Pastukhova。
文摘Wide-bandgap gallium oxide(Ga_(2)O_(3))is one of the most promising semiconductor materials for solar-blind(200 nm to 280 nm)photodetection.In its amorphous form,amorphous gallium oxide(a-Ga_(2)O_(3))maintains its intrinsic optoelectronic properties while can be prepared at a low growth temperature,thus it is compatible with Si integrated circuits(ICs)technology.Herein,the a-Ga_(2)O_(3) film is directly deposited on pre-fabricated Au interdigital electrodes by plasma enhanced atomic layer deposition(PE-ALD)at a growth temperature of 250°C.The stoichiometric a-Ga_(2)O_(3) thin film with a low defect density is achieved owing to the mild PE-ALD condition.As a result,the fabricated Au/a-Ga_(2)O_(3)/Au photodetector shows a fast time response,high responsivity,and excellent wavelength selectivity for solar-blind photodetection.Furthermore,an ultra-thin MgO layer is deposited by PE-ALD to passivate the Au/a-Ga_(2)O_(3)/Au interface,resulting in the responsivity of 788 A/W(under 254 nm at 10 V),a 250-nm-to-400-nm rejection ratio of 9.2×10^(3),and the rise time and the decay time of 32 ms and 6 ms,respectively.These results demonstrate that the a-Ga_(2)O_(3) film grown by PE-ALD is a promising candidate for high-performance solar-blind photodetection and potentially can be integrated with Si ICs for commercial production.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11175024)the Beijing Natural Science Foundation, China (Grant No. 1112012)+1 种基金the Science and Technology on Surface Engineering Laboratorythe Beijing Education Committee, China (Grant Nos. BM201002, 2011BAD24B01, KM201110015008, KM201010015005, and PHR20110516)
文摘Metal aluminum (A1) thin films are prepared by 2450 MHz electron cyclotron resonance plasma-assisted atomic layer deposition on glass and p-Si substrates using trimethylaluminum as the precursor and hydrogen as the reductive gas. We focus our attention on the plasma source for the thin-film preparation and annealing of the as-deposited films relative to the surface square resistivity. The square resistivity of as-deposited A1 films is greatly reduced after annealing and almost reaches the value of bulk metal. Through chemical and structural analysis, we conclude that the square resistivity is determined by neither the contaminant concentration nor the surface morphology, but by both the crystallinity and crystal size in this process.
基金supported financially by the National Natural Science Foundation of China (No.110751402347)the Beijing Natural Science Foundation (Nos.4173077 and 2184112)+2 种基金the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BR-16-018A,FRF-TP-17-022A1,FRF-TP-17-069A1 and 06400071)the China Postdoctoral Science Foundation (No. 2018M631333)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2015387)
文摘In this work,the GaN thin films were directly deposited on multilayer graphene(MLG)by plasma-enhanced atomic layer deposition.The deposition was carried out at a low temperature using triethylgallium(TEGa)precursor and Ar/N2/H2 plasma.Chemical properties of the bulk GaN and GaN-graphene interface were analyzed using X-ray photoelectron spectroscopy.The sharp interface between GaN and graphene was verified via X-ray reflectivity and transmission electron microscope.The microstructures and the nucleation behaviors of the GaN grown on graphene have been also studied.The results of grazing incidence X-ray diffraction and Raman spectrum indicate that the as-deposited sample is polycrystalline with wurtzite structure and has a weakly tensile stress.Optical properties of the sample were investigated by photoluminescence(PL)at room temperature.The successful growth of GaN on MLG at a low temperature opens up the possibility of ameliorating the performance of electronic and optical devices based on GaN/graphene heterojunction.
基金supported by the Global Frontier R&D Program (2013M3A6B1078874) on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning, Republic of Koreasupported by a grant from the Industrial R&D Program for Core Technology of Materials funded by the Ministry of Industry and Energy (10060331), Republic of Korea
文摘Titanium-aluminum-nitride(TiAlN) films were grown by plasma-enhanced atomic layer deposition(PEALD)on 316 L stainless steel at a deposition temperature of 200 °C. A supercycle, consisting of one AlN and ten TiN subcycles, was used to prepare TiAlN films with a chemical composition of Ti(0.25)Al(0.25)N(0.50). The addition of AlN to TiN resulted in an increased electrical resistivity of TiAlN films of 2800 μΩ cm, compared with 475 μΩ cm of TiN films, mainly due to the high electrical resistivity of AlN and the amorphous structure of TiAlN. However, potentiostatic polarization measurements showed that amorphous TiAlN films exhibited excellent corrosion resistance with a corrosion current density of 0.12 μA/cm^2, about three times higher than that of TiN films, and about 12.5 times higher than that of 316 L stainless steel.
基金Supported by the Natural Science Foundation of Jilin Province, China(No.201215025), the Major Science and Technology Project of Jilin Province, China(No.llZDGG010), the Program for Changjiang Scholars and Innovative Research Team in University of China and the "211" and "985" Project of Jilin University, China.
文摘Carbon materials with various structures were produced via plasma-enhanced chemical vapor deposition by controlling substrate temperature and mixed gases in the atmosphere. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM) and Raman spectroscopy were employed to investigate the morphology and structure of the materials. The results show that at a low substrate temperature(100 ~C) in CHa:Ar(flow rate ratio was 100 cm3/min:10 cm3/min), amorphous carbon formed on Si(100) that could act as a support for the growth of carbon nanobelt and layer graphene at 800 ~C. Vertically oriented multi-layer graphene nanosheets(GNs) were catalyst-free synthesized on Si and Ni foam at 800 ~C in a mixture of CHa:Ar(20 cm3/min:60, 80 and 100 cm3/min). The capacitor character investigated by cyclic voltammetry and galvanostatic charge/discharge indicates that for the as-synthesized GNs, the electrochemical capacitance is very small(16 F/g at current density of 16 A/g). However, having been treated in acidic solution, the GNs exhibited good capacitive behavior, with a capacitance of 166 F/g, and after 800 charge/discharge cycles at 32 A/g, the capacitance could retain about 88.4%. The enhancement of specific capacitance is attributed to the increase of specific surface area after etching treatment of them.
基金supported by the National Science and Technology Major Project of China(No.2009ZX02037-003)China Postdoctoral Science Foundation(No.2011M500996)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) analysis indicates that substitutional nitrogen atoms (-395.9 eV) with 1 atom% are effectively doped into TiO2 films. UV-VIS spectrometry shows that the in-situ nitrogen doping method indeed enhances the visible-activity of TiO2 films in the 425-550 nm range, and the results of the performance tests of the N-doped TiO2 films also imply that the photocatalysis activity is improved by in-situ doping. The in-situ doping mechanism of the N-doped TiO2 film is suggested according to the XPS results and the typical atomic layer deposition process.
基金Project supported by National Advanced Research Program (Grant No 51308030102)Xi’an Applied Materials Innovation Fund (Grant No XA-AM-200616)National Natural Science Foundation of China (Grant Nos 60506020 and 60676048)
文摘This paper discusses the effect of N2 plasma treatment before dielectric deposition on the electrical performance of a Al203/AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor (MISHEMT),with Al203 deposited by atomic layer deposition.The results indicated that the gate leakage was decreased two orders of magnitude after the Al203/AlGaN interface was pretreated by N2 plasma.Furthermore,effects of N2 plasma pretreatrnent on the electrical properties of the AlGaN/Al2O3 interface were investigated by x-ray photoelectron spectroscopy measurements and the interface quality between Al203 and AlGaN film was improved.
文摘目的提高聚碳酸亚丙酯(PPC)薄膜的阻隔性。方法采用等离子体增强化学气相沉积法在PPC薄膜表面上沉积SiOx层,并以阻氧性能为工艺评估指标。结果采用等离子体增强化学气相沉积法可以在PPC薄膜表面沉积SiOx层,最佳工艺条件为沉积功率150 W、六甲基硅氧烷流量为6 m L/min,氧化流量为12 m L/min、沉积时间60 min,通过沉积SiOx层,PPC薄膜的阻氧性能得到了有效的提高。结论采用等离子化学气相沉积法在PPC薄膜上沉积SiOx层可明显提高对氧气、水蒸气和紫外线的阻隔性能,并保持原有韧性。